4.5.8的固件,神经网络训练的代码,通过USB链接电脑供电可以脱机运行,但是通过5v供电不可以实现
-
import sensor, image, time, os, ml, math, uos, gc,pyb from ulab import numpy as np from machine import UART sensor.reset() sensor.set_pixformat(sensor.GRAYSCALE) sensor.set_framesize(sensor.QVGA) sensor.set_windowing((120, 120)) sensor.skip_frames(time=2000) threshold = (100, 255) net = None labels = None min_confidence = 0.5 try: net = ml.Model("trained.tflite", load_to_fb=uos.stat('trained.tflite')[6] > (gc.mem_free() - (64*1024))) except Exception as e: raise Exception('Failed to load "trained.tflite", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')') try: labels = [line.rstrip('\n') for line in open("labels.txt")] except Exception as e: raise Exception('Failed to load "labels.txt", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')') colors = [ (255, 0, 0), ( 0, 255, 0), (255, 255, 0), ( 0, 0, 255), (255, 0, 255), ( 0, 255, 255), (255, 255, 255), ] threshold_list = [(math.ceil(min_confidence * 255), 255)] def fomo_post_process(model, inputs, outputs): ob, oh, ow, oc = model.output_shape[0] x_scale = inputs[0].roi[2] / ow y_scale = inputs[0].roi[3] / oh scale = min(x_scale, y_scale) x_offset = ((inputs[0].roi[2] - (ow * scale)) / 2) + inputs[0].roi[0] y_offset = ((inputs[0].roi[3] - (ow * scale)) / 2) + inputs[0].roi[1] l = [[] for i in range(oc)] for i in range(oc): img = image.Image(outputs[0][0, :, :, i] * 255) blobs = img.find_blobs( threshold_list, x_stride=1, y_stride=1, area_threshold=1, pixels_threshold=1 ) for b in blobs: rect = b.rect() x, y, w, h = rect score = ( img.get_statistics(thresholds=threshold_list, roi=rect).l_mean() / 255.0 ) x = int((x * scale) + x_offset) y = int((y * scale) + y_offset) w = int(w * scale) h = int(h * scale) l[i].append((x, y, w, h, score)) return l clock = time.clock() led = pyb.LED(1) uart = UART(3, 9600) while(True): led.on() clock.tick() img = sensor.snapshot() img.binary([threshold]) for i, detection_list in enumerate(net.predict([img], callback=fomo_post_process)): if i == 0: continue if len(detection_list) == 0: continue print("********** %s **********" % labels[i]) result_str = str(labels[i]) uart.write(result_str.encode())
-
先脱机运行LED闪灯的程序来测试:https://book.openmv.cc/example/02-Board-Control/led-control.html