• OpenMV VSCode 扩展发布了,在插件市场直接搜索OpenMV就可以安装
  • 如果有产品硬件故障问题,比如无法开机,论坛很难解决。可以直接找售后维修
  • 发帖子之前,请确认看过所有的视频教程,https://singtown.com/learn/ 和所有的上手教程http://book.openmv.cc/
  • 每一个新的提问,单独发一个新帖子
  • 帖子需要目的,你要做什么?
  • 如果涉及代码,需要报错提示全部代码文本,请注意不要贴代码图片
  • 必看:玩转星瞳论坛了解一下图片上传,代码格式等问题。
  • 有没有人遇到这个问题的,在eage impulse上训练完模型,烧录一直报这个错误



    • 0_1723992974939_D47D167BF1E429D3D5D89F1212FF8869.png



    • 我也是这样的,不知道为啥



    • 我的plus也这样,这周刚买的



    • 官方的例子也是一样,应该是版本的问题,这么长时间了也没解决?
      https://book.openmv.cc/example/25-Machine-Learning/tf-mnist.html
      0_1725526661962_30e4fc2f-a061-4faf-b979-9972927b809c-1725526565038.png
      https://book.openmv.cc/project/traffic-sign.html
      0_1725526781653_bcd64abb-4347-4335-8aac-8b44ec75bd98-1725526773489.png



    • @avco 版本问题,4.6.0也会出现,需要回退固件版本到4.5.4,
      0_1725527826690_ab1f9500-93af-40fa-909c-721bdc5dc8ed-1725527786383.png



    • 新的固件,使用下面新的代码:

      
      import sensor
      import time
      import ml
      from ml.utils import NMS
      import math
      import image
      
      sensor.reset()  # Reset and initialize the sensor.
      sensor.set_pixformat(sensor.RGB565)  # Set pixel format to RGB565 (or GRAYSCALE)
      sensor.set_framesize(sensor.QVGA)  # Set frame size to QVGA (320x240)
      sensor.set_windowing((240, 240))  # Set 240x240 window.
      sensor.skip_frames(time=2000)  # Let the camera adjust.
      
      min_confidence = 0.4
      threshold_list = [(math.ceil(min_confidence * 255), 255)]
      
      
      print(model)
      
      model = ml.Model("trained.tflite", load_to_fb=True)
      labels = [line.rstrip('\n') for line in open("labels.txt")]
      
      colors = [  # Add more colors if you are detecting more than 7 types of classes at once.
          (255, 0, 0),
          (0, 255, 0),
          (255, 255, 0),
          (0, 0, 255),
          (255, 0, 255),
          (0, 255, 255),
          (255, 255, 255),
      ]
      
      
      # FOMO outputs an image per class where each pixel in the image is the centroid of the trained
      # object. So, we will get those output images and then run find_blobs() on them to extract the
      # centroids. We will also run get_stats() on the detected blobs to determine their score.
      # The Non-Max-Supression (NMS) object then filters out overlapping detections and maps their
      # position in the output image back to the original input image. The function then returns a
      # list per class which each contain a list of (rect, score) tuples representing the detected
      # objects.
      def fomo_post_process(model, inputs, outputs):
          n, oh, ow, oc = model.output_shape[0]
          nms = NMS(ow, oh, inputs[0].roi)
          for i in range(oc):
              img = image.Image(outputs[0][0, :, :, i] * 255)
              blobs = img.find_blobs(
                  threshold_list, x_stride=1, area_threshold=1, pixels_threshold=1
              )
              for b in blobs:
                  rect = b.rect()
                  x, y, w, h = rect
                  score = (
                      img.get_statistics(thresholds=threshold_list, roi=rect).l_mean() / 255.0
                  )
                  nms.add_bounding_box(x, y, x + w, y + h, score, i)
          return nms.get_bounding_boxes()
      
      
      clock = time.clock()
      while True:
          clock.tick()
      
          img = sensor.snapshot()
      
          for i, detection_list in enumerate(model.predict([img], callback=fomo_post_process)):
              if i == 0:
                  continue  # background class
              if len(detection_list) == 0:
                  continue  # no detections for this class?
      
              print("********** %s **********" % labels[i])
              for (x, y, w, h), score in detection_list:
                  center_x = math.floor(x + (w / 2))
                  center_y = math.floor(y + (h / 2))
                  print(f"x {center_x}\ty {center_y}\tscore {score}")
                  img.draw_circle((center_x, center_y, 12), color=colors[i])
      
          print(clock.fps(), "fps", end="\n")