• OpenMV VSCode 扩展发布了,在插件市场直接搜索OpenMV就可以安装
  • 如果有产品硬件故障问题,比如无法开机,论坛很难解决。可以直接找售后维修
  • 发帖子之前,请确认看过所有的视频教程,https://singtown.com/learn/ 和所有的上手教程http://book.openmv.cc/
  • 每一个新的提问,单独发一个新帖子
  • 帖子需要目的,你要做什么?
  • 如果涉及代码,需要报错提示全部代码文本,请注意不要贴代码图片
  • 必看:玩转星瞳论坛了解一下图片上传,代码格式等问题。
  • 一段代码可以实现灰度图人脸识别,一段代码可以实现口罩检测,请问如何合二为一?



    • 两段代码都可以运行成功,想要实现既可以用矩形框框出人脸,又可以在终端显示带口罩的概率,跪求大神一助



    • @fggx # Edge Impulse - OpenMV Image Classification Example

      import sensor, image, time, os, tf, uos, gc

      sensor.reset() # Reset and initialize the sensor.
      sensor.set_pixformat(sensor.RGB565) # Set pixel format to RGB565 (or GRAYSCALE)
      sensor.set_framesize(sensor.QVGA) # Set frame size to QVGA (320x240)
      sensor.set_windowing((240, 240)) # Set 240x240 window.
      sensor.skip_frames(time=2000) # Let the camera adjust.

      net = None
      labels = None

      try:
      # load the model, alloc the model file on the heap if we have at least 64K free after loading
      net = tf.load("trained.tflite", load_to_fb=uos.stat('trained.tflite')[6] > (gc.mem_free() - (64*1024)))
      except Exception as e:
      print(e)
      raise Exception('Failed to load "trained.tflite", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')')

      try:
      labels = [line.rstrip('\n') for line in open("labels.txt")]
      except Exception as e:
      raise Exception('Failed to load "labels.txt", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')')

      clock = time.clock()
      while(True):
      clock.tick()

      img = sensor.snapshot()
      
      # default settings just do one detection... change them to search the image...
      for obj in net.classify(img, min_scale=1.0, scale_mul=0.8, x_overlap=0.5, y_overlap=0.5):
          print("**********\nPredictions at [x=%d,y=%d,w=%d,h=%d]" % obj.rect())
          img.draw_rectangle(obj.rect())
          # This combines the labels and confidence values into a list of tuples
          predictions_list = list(zip(labels, obj.output()))
      
          for i in range(len(predictions_list)):
              print("%s = %f" % (predictions_list[i][0], predictions_list[i][1]))
      
      print(clock.fps(), "fps")
      

      口罩识别的

      导入相应的库

      import sensor, image, time

      初始化摄像头

      sensor.reset()

      设置相机图像的对比度为1

      sensor.set_contrast(1)

      设置相机的增益上限为16

      sensor.set_gainceiling(16)

      设置采集到照片的大小

      sensor.set_framesize(sensor.HQVGA)

      设置采集到照片的格式:灰色图像

      sensor.set_pixformat(sensor.GRAYSCALE)

      加载Haar Cascade 模型

      默认使用25个步骤,减少步骤会加快速度但会影响识别成功率

      face_cascade = image.HaarCascade("frontalface", stage = 25)
      print(face_cascade)

      创建一个时钟来计算摄像头每秒采集的帧数FPS

      clock = time.clock()

      while(True):
      # 更新FPS时钟
      clock.tick()

      # 拍摄图片并返回img
      img = sensor.snapshot()
      
      # 寻找人脸对象
      # threshold和scale_factor两个参数控制着识别的速度和准确性
      objects = img.find_features(face_cascade, threshold=0.75, scale_factor=1.25)
      
      # 用矩形将人脸画出来
      for r in objects:
      	img.draw_rectangle(r)
      
      # 串口打印FPS参数
      # print(clock.fps())
      

      人脸灰度识别的



    • 这是口罩检测的代码:
      # Edge Impulse - OpenMV Image Classification Example
      
      import sensor, image, time, os, tf, uos, gc
      
      sensor.reset()                         # Reset and initialize the sensor.
      sensor.set_pixformat(sensor.RGB565)    # Set pixel format to RGB565 (or GRAYSCALE)
      sensor.set_framesize(sensor.QVGA)      # Set frame size to QVGA (320x240)
      sensor.set_windowing((240, 240))       # Set 240x240 window.
      sensor.skip_frames(time=2000)          # Let the camera adjust.
      
      net = None
      labels = None
      
      try:
          # load the model, alloc the model file on the heap if we have at least 64K free after loading
          net = tf.load("trained.tflite", load_to_fb=uos.stat('trained.tflite')[6] > (gc.mem_free() - (64*1024)))
      except Exception as e:
          print(e)
          raise Exception('Failed to load "trained.tflite", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')')
      
      try:
          labels = [line.rstrip('\n') for line in open("labels.txt")]
      except Exception as e:
          raise Exception('Failed to load "labels.txt", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')')
      
      clock = time.clock()
      while(True):
          clock.tick()
      
          img = sensor.snapshot()
      
          # default settings just do one detection... change them to search the image...
          for obj in net.classify(img, min_scale=1.0, scale_mul=0.8, x_overlap=0.5, y_overlap=0.5):
              print("**********\nPredictions at [x=%d,y=%d,w=%d,h=%d]" % obj.rect())
              img.draw_rectangle(obj.rect())
              # This combines the labels and confidence values into a list of tuples
              predictions_list = list(zip(labels, obj.output()))
      
              for i in range(len(predictions_list)):
                  print("%s = %f" % (predictions_list[i][0], predictions_list[i][1]))
      
          print(clock.fps(), "fps")
      
      
      
      
      
      
      
      
      
      
      
      这是人脸识别的代码:
      import sensor, image, time
      sensor.reset()
      sensor.set_contrast(1)
      sensor.set_gainceiling(16)
      sensor.set_framesize(sensor.HQVGA)
      sensor.set_pixformat(sensor.GRAYSCALE)
      face_cascade = image.HaarCascade("frontalface", stage = 25)
      print(face_cascade)
      clock = time.clock()
      while(True):
      	clock.tick()
      	img = sensor.snapshot()
      	objects = img.find_features(face_cascade, threshold=0.75, scale_factor=1.25)
      	for r in objects:
      		img.draw_rectangle(r)
      	print(clock.fps())
      


    • 你直接神经网络里加一个“无人”的分类得了。

      如果要组合代码,可以参考 https://singtown.com/learn/50029/



    • 人脸检测+口罩识别:
      使用impluse edge 和haar,需要添加到U盘里生成的两个文件,可以直接复制运行。

      以下代码可以成功运行,矩形框标出人脸,并显示出mask yes 或者mask no,并实现了在lcd上显示。欢迎大家参考,有问题可以留言。

      import sensor, image, time, os, tf, uos, gc, lcd
      
      sensor.reset()
      sensor.set_pixformat(sensor.RGB565)
      sensor.set_framesize(sensor.QVGA)
      sensor.set_windowing((240, 240))
      sensor.skip_frames(time=2000)
      face_cascade = image.HaarCascade("frontalface", stage=25)
      net = tf.load("trained.tflite", load_to_fb=uos.stat('trained.tflite')[6] > (gc.mem_free() - (64*1024)))
      labels = [line.rstrip('\n') for line in open("labels.txt")]
      clock = time.clock()
      
      
      lcd.init()
      lcd.clear()
      
      while True:
          clock.tick()
      
          
          img = sensor.snapshot()
      
          
          objects = img.find_features(face_cascade, threshold=0.75, scale_factor=1.25)
      
          
          for r in objects:
              img.draw_rectangle(r)
      
         
          for r in objects:
              
              face_img = img.crop(r)
              
              mask = net.classify(face_img)[0].output()[0]
              
              if mask > 0.1:
                  img.draw_rectangle(r, color=(0, 255, 0))
                  img.draw_string(r[0], r[1], "Mask", color=(0, 255, 0))
              
              else:
                  img.draw_rectangle(r, color=(255, 0, 0))
                  img.draw_string(r[0], r[1], "No Mask", color=(255, 0, 0))
      
          
          lcd.display(img)
      
          
          print(clock.fps())