我在生成的ei_image_classification.py文件中修改roi边框内容,只有一个边框可以正常识别?
-
# Edge Impulse - OpenMV Image Classification Example import sensor, image, time, os, tf, uos, gc sensor.reset() # Reset and initialize the sensor. sensor.set_pixformat(sensor.RGB565) # Set pixel format to RGB565 (or GRAYSCALE) sensor.set_framesize(sensor.QVGA) # Set frame size to QVGA (320x240) sensor.set_windowing((240, 240)) # Set 240x240 window. sensor.skip_frames(time=2000) # Let the camera adjust. net = None labels = None try: # load the model, alloc the model file on the heap if we have at least 64K free after loading net = tf.load("trained.tflite", load_to_fb=uos.stat('trained.tflite')[6] > (gc.mem_free() - (64*1024))) except Exception as e: print(e) raise Exception('Failed to load "trained.tflite", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')') try: labels = [line.rstrip('\n') for line in open("labels.txt")] except Exception as e: raise Exception('Failed to load "labels.txt", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')') clock = time.clock() while(True): clock.tick() img = sensor.snapshot() roil = (3,35,62,92) # default settings just do one detection... change them to search the image... for obj in net.classify(img,roi=roil,min_scale=1.0, scale_mul=0.8, x_overlap=0.5, y_overlap=0.5): print("**********\nPredictions at [x=%d,y=%d,w=%d,h=%d]" % obj.rect()) img.draw_rectangle(obj.rect()) # This combines the labels and confidence values into a list of tuples predictions_list = list(zip(labels, obj.output())) for i in range(len(predictions_list)): print("%s = %f" % (predictions_list[i][0], predictions_list[i][1])) roir = (126,35,62,92) # default settings just do one detection... change them to search the image... for obj in net.classify(img,roi=roir,min_scale=1.0, scale_mul=0.8, x_overlap=0.5, y_overlap=0.5): print("**********\nPredictions2 at [x=%d,y=%d,w=%d,h=%d]" % obj.rect()) img.draw_rectangle(obj.rect()) # This combines the labels and confidence values into a list of tuples predictions_list2 = list(zip(labels, obj.output())) for p in range(len(predictions_list2)): print("%s = %f" % (predictions_list2[p][0], predictions_list2[p][1])) print(clock.fps(), "fps")
Predictions at [x=3,y=35,w=62,h=92]
0 = 0.000000
4 = 0.000000
8 = 0.996094
Predictions2 at [x=126,y=35,w=62,h=92]
0 = 0.996094
4 = 0.000000
8 = 0.000000
5.22268 fps左边识别8右边识别4 但是右边roi中没有识别到
-
别沉啊。。。。。。。。
-
我没办法复现问题, 没办法判断是模型的准确度问题, 还是代码的问题.