报错为not find类,但不理解怎么解决
-
@kidswong999 顺便问一下,PID 一般起到的是发送控制指令的作用吗?如果和飞控连接,我的老师说的是openmv部分的代码并不需要pid,所以我比较疑惑与飞控进行连接的时候,是基于什么而实现控制指令?
-
你的代码并不是全部的代码,应该还有 pid.py data_pack.py t2017_task1.py t2017_task2.py t2017_task3.py t2017_task_plus.py
要全部上传上来,否则我没办法测试。
-
@ugli 在 报错为not find类,但不理解怎么解决 中说:
@kidswong999 顺便问一下,PID 一般起到的是发送控制指令的作用吗?如果和飞控连接,我的老师说的是openmv部分的代码并不需要pid,所以我比较疑惑与飞控进行连接的时候,是基于什么而实现控制指令?
单独的问题单独发帖子。
-
@kidswong999 import sensor, image, time, pyb, struct, math
import pid, data_packdef compareBlob(blob1, blob2): #比较两个色块大小的函数
tmp = blob1.pixels() - blob2.pixels()
if tmp == 0:
return 0
elif tmp > 0:
return 1
else:
return -1def task_2017_1_1():
red_threshold_01 = (0,55) #目标色块的灰度值参数范围
time_flag = 0
num_stop = 0
pid_x = pid.PID(80,0.5,0,0,30) #x轴方向的pid控制,pid参数要自己调
pid_y = pid.PID(60,0.5,0,0,30) #y轴方向的pid控制
flag_x_y = 0
Buzzer = pyb.Pin("P6", pyb.Pin.OUT_PP)
##################各个字母所对应的ASCII值######################
R = ord('R')
L = ord('L')
S = ord('S')
B = ord('B')
G = ord('G')
E = ord('E')
###########################################################
Buzzer.value(1)
time.sleep(1000)
Buzzer.value(0)
while(True):
print("the task number is 1 now!")
img = sensor.snapshot().lens_corr(1.8)
blobs = img.find_blobs([red_threshold_01],
pixels_threshold=100, merge=True) #寻找目标色块,低于150像素的视为噪声
img.binary([red_threshold_01], invert = True) #二值化处理
if blobs: #如果识别到目标色块
#print(blobs) #在终端打印出blobs的信息
bigBlob = blobs[0] #将第一个色块赋值给最大色块
for blob_temp in blobs: #此循环找出最大色块,进一步滤除噪声
if compareBlob(bigBlob, blob_temp) == -1:
bigBlob = blob_temp
img.draw_rectangle(bigBlob[0:4]) #画个矩形框标出色块所在区域
img.draw_cross(bigBlob[5], bigBlob[6]) #画个十字架标出色块所在区域的中心点
if (abs(bigBlob.cx() - 80) < 5) and
(abs(bigBlob.cy() - 60) < 5):
time_flag = 1
if flag_x_y == 0 : #调节x与y方向的切换标志
speed_x = pid_x.IncPIDCalc(bigBlob.cx())
# print("speed_x: %f" %speed_x)
if speed_x > 0: #说明目标当前x值偏小,无人机偏右,需要向左调整
data_pack.send_cmd(L,speed_x)
else:
data_pack.send_cmd(R,abs(speed_x))
print("RIGHT")
flag_x_y = 1 #标志位置1,表示下次循环调整y轴方向
else :
speed_y = pid_y.IncPIDCalc(bigBlob.cy())
#print("speed_y: %f" %speed_y)
if speed_y >= 0: #说明目标当前y值偏小,无人机偏后,需要向前调整
data_pack.send_cmd(G,speed_y)
else:
data_pack.send_cmd(B,abs(speed_y))
flag_x_y = 0 #标志位置0,表示下次循环调整x轴方向
if time_flag == 1:
num_stop += 1
if num_stop >= 200 : #200次差不多15秒钟,降落
num_stop = 0
data_pack.send_cmd(E,0)
else:
data_pack.send_cmd(S,0) #没有检测到目标色块,这里让无人机原地罚站
-
@kidswong999 import sensor, image, time, pyb, struct, math
def compareBlob(blob1, blob2): #比较两个色块大小的函数
tmp = blob1.pixels() - blob2.pixels()
if tmp == 0:
return 0
elif tmp > 0:
return 1
else:
return -1def task_2017_1_2():
red_threshold_01 = (0,55) #目标色块的灰度值参数范围
Buzzer = pyb.Pin("P6", pyb.Pin.OUT_PP)
Buzzer.value(1)
time.sleep(500)
Buzzer.value(0)
time.sleep(500)
Buzzer.value(1)
time.sleep(500)
Buzzer.value(0)
while(True):
print("the task number is 2 now!")
img = sensor.snapshot().lens_corr(1.8)
blobs = img.find_blobs([red_threshold_01],
pixels_threshold=100, merge=True) #寻找目标色块,低于150像素的视为噪声
img.binary([red_threshold_01], invert = True) #二值化处理
if blobs: #如果识别到目标色块
#print(blobs) #在终端打印出blobs的信息
bigBlob = blobs[0] #将第一个色块赋值给最大色块
for blob_temp in blobs: #此循环找出最大色块,进一步滤除噪声
if compareBlob(bigBlob, blob_temp) == -1:
bigBlob = blob_temp
img.draw_rectangle(bigBlob[0:4]) #画个矩形框标出色块所在区域
img.draw_cross(bigBlob[5], bigBlob[6]) #画个十字架标出色块所在区域的中心点
print("Bigbolb.pixel: %d" %bigBlob.pixels())
if (bigBlob.pixels() < 1500) and
(bigBlob.pixels() > 300):
pyb.LED(2).on()
Buzzer.value(1)
else:
pyb.LED(2).off()
Buzzer.value(0)
-
@kidswong999 import sensor, image, time, pyb, struct, math
import pid, data_packdef compareBlob(blob1, blob2): #比较两个色块大小的函数
tmp = blob1.pixels() - blob2.pixels()
if tmp == 0:
return 0
elif tmp > 0:
return 1
else:
return -1def task_2017_1_3():
red_threshold_03 = (0,55) #目标色块的灰度值参数范围
time_flag = 0
num_stop = 0
pid_x = pid.PID(80,0.3,0,0,30) #x轴方向的pid控制,pid参数要自己调
pid_y = pid.PID(60,0.3,0,0,30) #y轴方向的pid控制
flag_x_y = 0
prepare_flag = 0
Buzzer = pyb.Pin("P6", pyb.Pin.OUT_PP)
##################各个字母所对应的ASCII值######################
R = ord('R')
L = ord('L')
S = ord('S')
B = ord('B')
G = ord('G')
E = ord('E')
###########################################################
Buzzer.value(1)
time.sleep(500)
Buzzer.value(0)
time.sleep(500)
Buzzer.value(1)
time.sleep(500)
Buzzer.value(0)
time.sleep(500)
Buzzer.value(1)
time.sleep(500)
Buzzer.value(0)
while(True):
print("the task number is 3 now!")
img = sensor.snapshot().lens_corr(1.8)
blobs = img.find_blobs([red_threshold_03],
pixels_threshold=100, merge=True) #寻找目标色块,低于150像素的视为噪声
img.binary([red_threshold_03], invert = True) #二值化处理
if len(blobs) == 2: #如果识别到目标色块
print("the number of blobs is %d" %len(blobs))
if(abs(blobs[0].cx()-80)<5) and
(abs(blobs[0].cy()-60)<5):
time_flag = 1
if flag_x_y == 0 : #调节x与y方向的切换标志
speed_x = pid_x.IncPIDCalc(blobs[0].cx())
# print("speed_x: %f" %speed_x)
if speed_x > 0: #说明目标当前x值偏小,无人机偏右,需要向左调整
data_pack.send_cmd(L,speed_x)
else:
data_pack.send_cmd(R,abs(speed_x))
flag_x_y = 1 #标志位置1,表示下次循环调整y轴方向
else :
speed_y = pid_y.IncPIDCalc(blobs[0].cy())
#print("speed_y: %f" %speed_y)
if speed_y >= 0: #说明目标当前y值偏小,无人机偏后,需要向前调整
data_pack.send_cmd(G,speed_y)
else:
data_pack.send_cmd(B,abs(speed_y))
flag_x_y = 0 #标志位置0,表示下次循环调整x轴方向
elif len(blobs) == 0:
print("the number of blobs is %d" %len(blobs))
if prepare_flag == 0 or prepare_flag == 2:
data_pack.send_cmd(E,0) #没有检测到目标色块,这里让无人机原地罚站
else:
data_pack.send_cmd(G,5)else : print("the number of blobs is %d" %len(blobs)) bigBlob = blobs[0] #将第一个色块赋值给最大色块 for blob_temp in blobs: #此循环找出最大色块,进一步滤除噪声 if compareBlob(bigBlob, blob_temp) == -1: bigBlob = blob_temp if prepare_flag == 1 and bigBlob.cy() > 80: data_pack.send_cmd(G,5) elif prepare_flag == 1 and bigBlob.cy() < 40: prepare_flag = 2 if(abs(bigBlob.cx()-80)<5) and \ (abs(bigBlob.cy()-60)<5) and \ prepare_flag == 0: prepare_flag = 1 if(abs(bigBlob.cx()-80)<5) and \ (abs(bigBlob.cy()-60)<5) and \ prepare_flag == 2: time_flag = 1 if prepare_flag == 0 or prepare_flag == 2: if flag_x_y == 0 : #调节x与y方向的切换标志 speed_x = pid_x.IncPIDCalc(bigBlob.cx()) # print("speed_x: %f" %speed_x) if speed_x > 0: #说明目标当前x值偏小,无人机偏右,需要向左调整 data_pack.send_cmd(L,speed_x) else: data_pack.send_cmd(R,abs(speed_x)) flag_x_y = 1 #标志位置1,表示下次循环调整y轴方向 else : speed_y = pid_y.IncPIDCalc(bigBlob.cy()) #print("speed_y: %f" %speed_y) if speed_y >= 0: #说明目标当前y值偏小,无人机偏后,需要向前调整 data_pack.send_cmd(G,speed_y) else: data_pack.send_cmd(B,abs(speed_y)) flag_x_y = 0 #标志位置0,表示下次循环调整x轴方向 else: #准备就绪,进入8区 data_pack.send_cmd(G,15) if time_flag == 1: num_stop += 1 if num_stop >= 120 : #100次差不多5秒钟,降落 data_pack.send_cmd(L,15) time.sleep(100) data_pack.send_cmd(L,15) time.sleep(100) data_pack.send_cmd(L,15) time.sleep(100) num_stop = 0 data_pack.send_cmd(E,0)
-
@kidswong999 import sensor, image, time, pyb, struct, math
import pid, data_packdef compareBlob(blob1, blob2): #比较两个色块大小的函数
tmp = blob1.pixels() - blob2.pixels()
if tmp == 0:
return 0
elif tmp > 0:
return 1
else:
return -1def task_2017_2():
threshold_01 = (0,55) #目标色块的灰度值参数范围
number_period = 0
pid_x = pid.PID(80,0.5,0,0,30) #x轴方向的pid控制,pid参数要自己调
pid_y = pid.PID(60,0.5,0,0,30) #y轴方向的pid控制
flag_x_y = 0
flag_buzzer = 0
stop_flag_car = 0
clock = time.clock()
Buzzer = pyb.Pin("P6", pyb.Pin.OUT_PP)
uart1 = pyb.UART(1, 115200, timeout_char = 100) #打开串口1
##################各个字母所对应的ASCII值######################
R = ord('R')
L = ord('L')
S = ord('S')
B = ord('B')
G = ord('G')
E = ord('E')
###########################################################
Buzzer.value(1)
time.sleep(400)
Buzzer.value(0)
time.sleep(400)
Buzzer.value(1)
time.sleep(400)
Buzzer.value(0)
time.sleep(400)
Buzzer.value(1)
time.sleep(400)
Buzzer.value(0)
time.sleep(400)
Buzzer.value(1)
time.sleep(400)
Buzzer.value(0)
while(True):
#print("the task number is 1 now!")
clock.tick()
number_period += 1
if number_period >= 60 :
number_period = 0
if stop_flag_car != S:
stop_flag_car = uart1.readchar()
if stop_flag_car == S:
if flag_buzzer == 0:
data_pack.send_cmd(E,0)
Buzzer.value(1)
time.sleep(1000)
Buzzer.value(0)
flag_buzzer = 1
#time.sleep(1000)
# print("landing start!")
#print("stop_flag_car : %s" %stop_flag_car)
# data_pack.send_cmd(S,0)
#print("stop_flag_car : %s" %stop_flag_car)
#continue
img = sensor.snapshot().lens_corr(1.8)
blobs = img.find_blobs([threshold_01],
pixels_threshold=100, merge=True) #寻找目标色块,低于150像素的视为噪声
img.binary([threshold_01], invert = True) #二值化处理
if blobs: #如果识别到目标色块
#print(blobs) #在终端打印出blobs的信息
bigBlob = blobs[0] #将第一个色块赋值给最大色块
for blob_temp in blobs: #此循环找出最大色块,进一步滤除噪声
if compareBlob(bigBlob, blob_temp) == -1:
bigBlob = blob_temp
img.draw_rectangle(bigBlob[0:4]) #画个矩形框标出色块所在区域
img.draw_cross(bigBlob[5], bigBlob[6]) #画个十字架标出色块所在区域的中心点
if flag_x_y == 0 : #调节x与y方向的切换标志
speed_x = pid_x.IncPIDCalc(bigBlob.cx())
# print("speed_x: %f" %speed_x)
if speed_x > 0: #说明目标当前x值偏小,无人机偏右,需要向左调整
data_pack.send_cmd(L,speed_x)
else:
data_pack.send_cmd(R,abs(speed_x))
flag_x_y = 1 #标志位置1,表示下次循环调整y轴方向
else :
speed_y = pid_y.IncPIDCalc(bigBlob.cy())
#print("speed_y: %f" %speed_y)
if speed_y >= 0: #说明目标当前y值偏小,无人机偏后,需要向前调整
data_pack.send_cmd(G,speed_y)
else:
data_pack.send_cmd(B,abs(speed_y))
flag_x_y = 0 #标志位置0,表示下次循环调整x轴方向
else:
data_pack.send_cmd(S,0) #没有检测到目标色块,这里让无人机原地罚站
-
@kidswong999
import sensor, image, time, math, struct ,pyb,utime
class PID:
def init(self, SetPoint,Proportion,Integral,Derivative,Limit):
# WARNING: Don't use PA4-X5 or PA5-X6 as echo pin without a 1k resistor
self.SetPoint = SetPoint #设定值
self.Proportion = Proportion #P
self.Integral = Integral #I
self.Derivative = Derivative #D
self.Limit = Limit #限幅
self.LastError = 0 #前1次误差值
self.PrevError = 0 #前2次误差值
self.iError = 0 #当前误差
self.iIncpid = 0 #增量误差
self.Uk = 0 #输出返回\def IncPIDCalc(self, NextPoint): # 当前误差 self.iError = self.SetPoint - NextPoint # 增量误差 self.iIncpid = (self.Proportion * (self.iError - self.LastError)+ self.Integral * self.iError + self.Derivative * (self.iError - 2 * self.LastError + self.PrevError)) #存储误差,用于下次计算 self.PrevError = self.LastError self.LastError = self.iError self.Uk += self.iIncpid self.Uk = self.Limit_Amplitude(self.Uk) # print("NextPoint : %f" % NextPoint) # print("Uk : %f" % self.Uk) return self.Uk def Limit_Amplitude(self,num): if num > self.Limit : return self.Limit elif num < -self.Limit: return -self.Limit else: return num
-
@kidswong999 import time, pyb, struct
C = ord('C')
F = ord('F')
G = ord('G')
B = ord('B')
R = ord('R')
L = ord('L')
D = ord('D')
U = ord('U')
E = ord('E')
S = ord('S')
H = ord('H')
uart3 = pyb.UART(3, 500000, timeout_char = 1000)
green_led = pyb.LED(2)def send_89(direct,velcity):
'''
功能字为0x89,控制前进(后退)、左(右)、上升(下降)速度大小
speed字段必须正
'''
s = 0xAA+0x8C+direct+(int(velcity/256))+(int(velcity%256))
s = int(s % 256)
temp_flow = struct.pack("<BBBBBhB",
0x00,
0xAA,
0x89,
03,
direct,
int(velcity),
s)
uart3.write(temp_flow)def send_98(direct,velcity):
'''
功能字为0x98,控制顺(逆)时针转动速度大小
speed字段正负一样
'''
s = 0xAA+0x9B+direct+(int(velcity/256))+(int(velcity%256))
s = int(s % 256)
temp_flow = struct.pack("<BBBBBhB",
0x00,
0xAA,
0x98,
03,
direct,
velcity,
s)
uart3.write(temp_flow)def send_cmd(direct,velcity):
if direct == C or direct == F:
send_98(direct,velcity)
time.sleep(3)
else:
send_89(direct,velcity)
if direct == S:
time.sleep(3)
-
@kidswong999 在 报错为not find类,但不理解怎么解决 中说:
大佬十分抱歉,之前这段时间在忙其他事情,没能继续更进这个问题,按回复时间依次为 t2017_task1.py t2017_task2.py t2017_task3.py t2017_task_plus.py pid.py data_pack.py,求大佬不吝赐教!
后面这是同一个教学案例包内的程序:line_calcu.py car_patro.py key_point.py
第一个:
import sensor, image, timedef get_line_k(x1,x2,y1,y2):
det_x = x2 - x1
det_y = y2 - y1
if det_x == 0: #考虑斜率无穷大的情况
det_x = 1
return (det_y/det_x)def get_line_b(x1,x2,y1,y2):
k = get_line_k(x1,x2,y1,y2)
return (y1-(k*x1))def get_line_cross_x(k1,k2,b1,b2):
det_k = k1 - k2
if det_k == 0:
return -1
else:
return (b2 - b1)/(k1 - k2)def get_line_cross_y(k1,k2,b1,b2):
det_k = k1 - k2
if det_k == 0:
return -1
else:
return (b1k2 - k1b2)/(k2 - k1)def get_cross_dot(lines):
cross_dot = [0,0]
x1 = lines[0].x1()
x2 = lines[0].x2()
x3 = lines[1].x1()
x4 = lines[1].x2()
y1 = lines[0].y1()
y2 = lines[0].y2()
y3 = lines[1].y1()
y4 = lines[1].y2()
k1 = get_line_k(x1,x2,y1,y2)
k2 = get_line_k(x3,x4,y3,y4)
b1 = get_line_b(x1,x2,y1,y2)
b2 = get_line_b(x3,x4,y3,y4)
cross_dot[0] = get_line_cross_x(k1,k2,b1,b2)
cross_dot[1] = get_line_cross_y(k1,k2,b1,b2)
return cross_dot
第二个:
import pyb,struct
uart = pyb.UART(3,115200, timeout_char = 1000)
def car_run(x1,x2):
if x1 > 0 :
right_value = x1
else :
right_value = x1
if x2 > 0 :
left_value = x2
else :
left_value = x2
send_rpm(right_value,left_value)
def send_rpm(right_value,left_value):
left_rpm = int(left_value * 27)
right_rpm = int(right_value * 27)
left_rpm_low = left_rpm & 0x00ff
left_rpm_high = left_rpm >> 8
right_rpm_low = right_rpm & 0x00ff
right_rpm_high = right_rpm >> 8
xor = 0x6^0x3^0x4^(left_rpm_low)^(left_rpm_high)^(right_rpm_low)^(right_rpm_high)
xor = (int(xor%256))
temp_flow = struct.pack("<BBBBBhhB",
0xaa,
0x55,
0x6,
0x3,
0x4,
left_rpm,
right_rpm,
xor)
ret = uart.write(temp_flow)
print(left_rpm/27, right_rpm/27)
第三个:
import sensor, image, time
-
你的代码格式不对,缩进完全不对,没办法运行。我建议这个代码是谁写的就找谁问问。
-
import sensor, image, time, pyb, struct, math import pid, data_pack def compareBlob(blob1, blob2): #比较两个色块大小的函数 tmp = blob1.pixels() - blob2.pixels() if tmp == 0: return 0 elif tmp > 0: return 1 else: return -1 def task_2017_1_1(): red_threshold_01 = (0,55) #目标色块的灰度值参数范围 time_flag = 0 num_stop = 0 pid_x = pid.PID(80,0.5,0,0,30) #x轴方向的pid控制,pid参数要自己调 pid_y = pid.PID(60,0.5,0,0,30) #y轴方向的pid控制 flag_x_y = 0 Buzzer = pyb.Pin("P6", pyb.Pin.OUT_PP) ##################各个字母所对应的ASCII值###################### R = ord('R') L = ord('L') S = ord('S') B = ord('B') G = ord('G') E = ord('E') ########################################################### Buzzer.value(1) time.sleep(1000) Buzzer.value(0) while(True): print("the task number is 1 now!") img = sensor.snapshot().lens_corr(1.8) blobs = img.find_blobs([red_threshold_01], pixels_threshold=100, merge=True) #寻找目标色块,低于150像素的视为噪声 img.binary([red_threshold_01], invert = True) #二值化处理 if blobs: #如果识别到目标色块 #print(blobs) #在终端打印出blobs的信息 bigBlob = blobs[0] #将第一个色块赋值给最大色块 for blob_temp in blobs: #此循环找出最大色块,进一步滤除噪声 if compareBlob(bigBlob, blob_temp) == -1: bigBlob = blob_temp img.draw_rectangle(bigBlob[0:4]) #画个矩形框标出色块所在区域 img.draw_cross(bigBlob[5], bigBlob[6]) #画个十字架标出色块所在区域的中心点 if (abs(bigBlob.cx() - 80) < 5) and \ (abs(bigBlob.cy() - 60) < 5): time_flag = 1 if flag_x_y == 0 : #调节x与y方向的切换标志 speed_x = pid_x.IncPIDCalc(bigBlob.cx()) # print("speed_x: %f" %speed_x) if speed_x > 0: #说明目标当前x值偏小,无人机偏右,需要向左调整 data_pack.send_cmd(L,speed_x) else: data_pack.send_cmd(R,abs(speed_x)) print("RIGHT") flag_x_y = 1 #标志位置1,表示下次循环调整y轴方向 else : speed_y = pid_y.IncPIDCalc(bigBlob.cy()) #print("speed_y: %f" %speed_y) if speed_y >= 0: #说明目标当前y值偏小,无人机偏后,需要向前调整 data_pack.send_cmd(G,speed_y) else: data_pack.send_cmd(B,abs(speed_y)) flag_x_y = 0 #标志位置0,表示下次循环调整x轴方向 if time_flag == 1: num_stop += 1 if num_stop >= 200 : #200次差不多15秒钟,降落 num_stop = 0 data_pack.send_cmd(E,0) else: data_pack.send_cmd(S,0) #没有检测到目标色块,这里让无人机原地罚站 ```上面的是task1
import sensor, image, time, pyb, struct, math
def compareBlob(blob1, blob2): #比较两个色块大小的函数
tmp = blob1.pixels() - blob2.pixels()
if tmp == 0:
return 0
elif tmp > 0:
return 1
else:
return -1def task_2017_1_2():
red_threshold_01 = (0,55) #目标色块的灰度值参数范围
Buzzer = pyb.Pin("P6", pyb.Pin.OUT_PP)
Buzzer.value(1)
time.sleep(500)
Buzzer.value(0)
time.sleep(500)
Buzzer.value(1)
time.sleep(500)
Buzzer.value(0)
while(True):
print("the task number is 2 now!")
img = sensor.snapshot().lens_corr(1.8)
blobs = img.find_blobs([red_threshold_01],
pixels_threshold=100, merge=True) #寻找目标色块,低于150像素的视为噪声
img.binary([red_threshold_01], invert = True) #二值化处理
if blobs: #如果识别到目标色块
#print(blobs) #在终端打印出blobs的信息
bigBlob = blobs[0] #将第一个色块赋值给最大色块
for blob_temp in blobs: #此循环找出最大色块,进一步滤除噪声
if compareBlob(bigBlob, blob_temp) == -1:
bigBlob = blob_temp
img.draw_rectangle(bigBlob[0:4]) #画个矩形框标出色块所在区域
img.draw_cross(bigBlob[5], bigBlob[6]) #画个十字架标出色块所在区域的中心点
print("Bigbolb.pixel: %d" %bigBlob.pixels())
if (bigBlob.pixels() < 1500) and
(bigBlob.pixels() > 300):
pyb.LED(2).on()
Buzzer.value(1)
else:
pyb.LED(2).off()
Buzzer.value(0)import sensor, image, time, pyb, struct, math
import pid, data_packdef compareBlob(blob1, blob2): #比较两个色块大小的函数
tmp = blob1.pixels() - blob2.pixels()
if tmp == 0:
return 0
elif tmp > 0:
return 1
else:
return -1def task_2017_1_3():
red_threshold_03 = (0,55) #目标色块的灰度值参数范围
time_flag = 0
num_stop = 0
pid_x = pid.PID(80,0.3,0,0,30) #x轴方向的pid控制,pid参数要自己调
pid_y = pid.PID(60,0.3,0,0,30) #y轴方向的pid控制
flag_x_y = 0
prepare_flag = 0
Buzzer = pyb.Pin("P6", pyb.Pin.OUT_PP)
##################各个字母所对应的ASCII值######################
R = ord('R')
L = ord('L')
S = ord('S')
B = ord('B')
G = ord('G')
E = ord('E')
###########################################################
Buzzer.value(1)
time.sleep(500)
Buzzer.value(0)
time.sleep(500)
Buzzer.value(1)
time.sleep(500)
Buzzer.value(0)
time.sleep(500)
Buzzer.value(1)
time.sleep(500)
Buzzer.value(0)
while(True):
print("the task number is 3 now!")
img = sensor.snapshot().lens_corr(1.8)
blobs = img.find_blobs([red_threshold_03],
pixels_threshold=100, merge=True) #寻找目标色块,低于150像素的视为噪声
img.binary([red_threshold_03], invert = True) #二值化处理
if len(blobs) == 2: #如果识别到目标色块
print("the number of blobs is %d" %len(blobs))
if(abs(blobs[0].cx()-80)<5) and
(abs(blobs[0].cy()-60)<5):
time_flag = 1
if flag_x_y == 0 : #调节x与y方向的切换标志
speed_x = pid_x.IncPIDCalc(blobs[0].cx())
# print("speed_x: %f" %speed_x)
if speed_x > 0: #说明目标当前x值偏小,无人机偏右,需要向左调整
data_pack.send_cmd(L,speed_x)
else:
data_pack.send_cmd(R,abs(speed_x))
flag_x_y = 1 #标志位置1,表示下次循环调整y轴方向
else :
speed_y = pid_y.IncPIDCalc(blobs[0].cy())
#print("speed_y: %f" %speed_y)
if speed_y >= 0: #说明目标当前y值偏小,无人机偏后,需要向前调整
data_pack.send_cmd(G,speed_y)
else:
data_pack.send_cmd(B,abs(speed_y))
flag_x_y = 0 #标志位置0,表示下次循环调整x轴方向
elif len(blobs) == 0:
print("the number of blobs is %d" %len(blobs))
if prepare_flag == 0 or prepare_flag == 2:
data_pack.send_cmd(E,0) #没有检测到目标色块,这里让无人机原地罚站
else:
data_pack.send_cmd(G,5)else : print("the number of blobs is %d" %len(blobs)) bigBlob = blobs[0] #将第一个色块赋值给最大色块 for blob_temp in blobs: #此循环找出最大色块,进一步滤除噪声 if compareBlob(bigBlob, blob_temp) == -1: bigBlob = blob_temp if prepare_flag == 1 and bigBlob.cy() > 80: data_pack.send_cmd(G,5) elif prepare_flag == 1 and bigBlob.cy() < 40: prepare_flag = 2 if(abs(bigBlob.cx()-80)<5) and \ (abs(bigBlob.cy()-60)<5) and \ prepare_flag == 0: prepare_flag = 1 if(abs(bigBlob.cx()-80)<5) and \ (abs(bigBlob.cy()-60)<5) and \ prepare_flag == 2: time_flag = 1 if prepare_flag == 0 or prepare_flag == 2: if flag_x_y == 0 : #调节x与y方向的切换标志 speed_x = pid_x.IncPIDCalc(bigBlob.cx()) # print("speed_x: %f" %speed_x) if speed_x > 0: #说明目标当前x值偏小,无人机偏右,需要向左调整 data_pack.send_cmd(L,speed_x) else: data_pack.send_cmd(R,abs(speed_x)) flag_x_y = 1 #标志位置1,表示下次循环调整y轴方向 else : speed_y = pid_y.IncPIDCalc(bigBlob.cy()) #print("speed_y: %f" %speed_y) if speed_y >= 0: #说明目标当前y值偏小,无人机偏后,需要向前调整 data_pack.send_cmd(G,speed_y) else: data_pack.send_cmd(B,abs(speed_y)) flag_x_y = 0 #标志位置0,表示下次循环调整x轴方向 else: #准备就绪,进入8区 data_pack.send_cmd(G,15) if time_flag == 1: num_stop += 1 if num_stop >= 120 : #100次差不多5秒钟,降落 data_pack.send_cmd(L,15) time.sleep(100) data_pack.send_cmd(L,15) time.sleep(100) data_pack.send_cmd(L,15) time.sleep(100) num_stop = 0 data_pack.send_cmd(E,0)
import sensor, image, time, pyb, struct, math
import pid, data_packdef compareBlob(blob1, blob2): #比较两个色块大小的函数
tmp = blob1.pixels() - blob2.pixels()
if tmp == 0:
return 0
elif tmp > 0:
return 1
else:
return -1def task_2017_2():
threshold_01 = (0,55) #目标色块的灰度值参数范围
number_period = 0
pid_x = pid.PID(80,0.5,0,0,30) #x轴方向的pid控制,pid参数要自己调
pid_y = pid.PID(60,0.5,0,0,30) #y轴方向的pid控制
flag_x_y = 0
flag_buzzer = 0
stop_flag_car = 0
clock = time.clock()
Buzzer = pyb.Pin("P6", pyb.Pin.OUT_PP)
uart1 = pyb.UART(1, 115200, timeout_char = 100) #打开串口1
##################各个字母所对应的ASCII值######################
R = ord('R')
L = ord('L')
S = ord('S')
B = ord('B')
G = ord('G')
E = ord('E')
###########################################################
Buzzer.value(1)
time.sleep(400)
Buzzer.value(0)
time.sleep(400)
Buzzer.value(1)
time.sleep(400)
Buzzer.value(0)
time.sleep(400)
Buzzer.value(1)
time.sleep(400)
Buzzer.value(0)
time.sleep(400)
Buzzer.value(1)
time.sleep(400)
Buzzer.value(0)
while(True):
#print("the task number is 1 now!")
clock.tick()
number_period += 1
if number_period >= 60 :
number_period = 0
if stop_flag_car != S:
stop_flag_car = uart1.readchar()
if stop_flag_car == S:
if flag_buzzer == 0:
data_pack.send_cmd(E,0)
Buzzer.value(1)
time.sleep(1000)
Buzzer.value(0)
flag_buzzer = 1
#time.sleep(1000)
# print("landing start!")
#print("stop_flag_car : %s" %stop_flag_car)
# data_pack.send_cmd(S,0)
#print("stop_flag_car : %s" %stop_flag_car)
#continue
img = sensor.snapshot().lens_corr(1.8)
blobs = img.find_blobs([threshold_01],
pixels_threshold=100, merge=True) #寻找目标色块,低于150像素的视为噪声
img.binary([threshold_01], invert = True) #二值化处理
if blobs: #如果识别到目标色块
#print(blobs) #在终端打印出blobs的信息
bigBlob = blobs[0] #将第一个色块赋值给最大色块
for blob_temp in blobs: #此循环找出最大色块,进一步滤除噪声
if compareBlob(bigBlob, blob_temp) == -1:
bigBlob = blob_temp
img.draw_rectangle(bigBlob[0:4]) #画个矩形框标出色块所在区域
img.draw_cross(bigBlob[5], bigBlob[6]) #画个十字架标出色块所在区域的中心点
if flag_x_y == 0 : #调节x与y方向的切换标志
speed_x = pid_x.IncPIDCalc(bigBlob.cx())
# print("speed_x: %f" %speed_x)
if speed_x > 0: #说明目标当前x值偏小,无人机偏右,需要向左调整
data_pack.send_cmd(L,speed_x)
else:
data_pack.send_cmd(R,abs(speed_x))
flag_x_y = 1 #标志位置1,表示下次循环调整y轴方向
else :
speed_y = pid_y.IncPIDCalc(bigBlob.cy())
#print("speed_y: %f" %speed_y)
if speed_y >= 0: #说明目标当前y值偏小,无人机偏后,需要向前调整
data_pack.send_cmd(G,speed_y)
else:
data_pack.send_cmd(B,abs(speed_y))
flag_x_y = 0 #标志位置0,表示下次循环调整x轴方向
else:
data_pack.send_cmd(S,0) #没有检测到目标色块,这里让无人机原地罚站import sensor, image, time, math, struct ,pyb,utime
class PID:
def init(self, SetPoint,Proportion,Integral,Derivative,Limit):
# WARNING: Don't use PA4-X5 or PA5-X6 as echo pin without a 1k resistor
self.SetPoint = SetPoint #设定值
self.Proportion = Proportion #P
self.Integral = Integral #I
self.Derivative = Derivative #D
self.Limit = Limit #限幅
self.LastError = 0 #前1次误差值
self.PrevError = 0 #前2次误差值
self.iError = 0 #当前误差
self.iIncpid = 0 #增量误差
self.Uk = 0 #输出返回\def IncPIDCalc(self, NextPoint): # 当前误差 self.iError = self.SetPoint - NextPoint # 增量误差 self.iIncpid = (self.Proportion * (self.iError - self.LastError)+ self.Integral * self.iError + self.Derivative * (self.iError - 2 * self.LastError + self.PrevError)) #存储误差,用于下次计算 self.PrevError = self.LastError self.LastError = self.iError self.Uk += self.iIncpid self.Uk = self.Limit_Amplitude(self.Uk) # print("NextPoint : %f" % NextPoint) # print("Uk : %f" % self.Uk) return self.Uk def Limit_Amplitude(self,num): if num > self.Limit : return self.Limit elif num < -self.Limit: return -self.Limit else: return num
import time, pyb, struct
C = ord('C')
F = ord('F')
G = ord('G')
B = ord('B')
R = ord('R')
L = ord('L')
D = ord('D')
U = ord('U')
E = ord('E')
S = ord('S')
H = ord('H')
uart3 = pyb.UART(3, 500000, timeout_char = 1000)
green_led = pyb.LED(2)def send_89(direct,velcity):
'''
功能字为0x89,控制前进(后退)、左(右)、上升(下降)速度大小
speed字段必须正
'''
s = 0xAA+0x8C+direct+(int(velcity/256))+(int(velcity%256))
s = int(s % 256)
temp_flow = struct.pack("<BBBBBhB",
0x00,
0xAA,
0x89,
03,
direct,
int(velcity),
s)
uart3.write(temp_flow)def send_98(direct,velcity):
'''
功能字为0x98,控制顺(逆)时针转动速度大小
speed字段正负一样
'''
s = 0xAA+0x9B+direct+(int(velcity/256))+(int(velcity%256))
s = int(s % 256)
temp_flow = struct.pack("<BBBBBhB",
0x00,
0xAA,
0x98,
03,
direct,
velcity,
s)
uart3.write(temp_flow)def send_cmd(direct,velcity):
if direct == C or direct == F:
send_98(direct,velcity)
time.sleep(3)
else:
send_89(direct,velcity)
if direct == S:
time.sleep(3)
-
@kidswong999 这个是task2
import sensor, image, time, pyb, struct, math def compareBlob(blob1, blob2): #比较两个色块大小的函数 tmp = blob1.pixels() - blob2.pixels() if tmp == 0: return 0 elif tmp > 0: return 1 else: return -1 def task_2017_1_2(): red_threshold_01 = (0,55) #目标色块的灰度值参数范围 Buzzer = pyb.Pin("P6", pyb.Pin.OUT_PP) Buzzer.value(1) time.sleep(500) Buzzer.value(0) time.sleep(500) Buzzer.value(1) time.sleep(500) Buzzer.value(0) while(True): print("the task number is 2 now!") img = sensor.snapshot().lens_corr(1.8) blobs = img.find_blobs([red_threshold_01], pixels_threshold=100, merge=True) #寻找目标色块,低于150像素的视为噪声 img.binary([red_threshold_01], invert = True) #二值化处理 if blobs: #如果识别到目标色块 #print(blobs) #在终端打印出blobs的信息 bigBlob = blobs[0] #将第一个色块赋值给最大色块 for blob_temp in blobs: #此循环找出最大色块,进一步滤除噪声 if compareBlob(bigBlob, blob_temp) == -1: bigBlob = blob_temp img.draw_rectangle(bigBlob[0:4]) #画个矩形框标出色块所在区域 img.draw_cross(bigBlob[5], bigBlob[6]) #画个十字架标出色块所在区域的中心点 print("Bigbolb.pixel: %d" %bigBlob.pixels()) if (bigBlob.pixels() < 1500) and \ (bigBlob.pixels() > 300): pyb.LED(2).on() Buzzer.value(1) else: pyb.LED(2).off() Buzzer.value(0)
-
@kidswong999 这个是task3
import sensor, image, time, pyb, struct, math import pid, data_pack def compareBlob(blob1, blob2): #比较两个色块大小的函数 tmp = blob1.pixels() - blob2.pixels() if tmp == 0: return 0 elif tmp > 0: return 1 else: return -1 def task_2017_1_3(): red_threshold_03 = (0,55) #目标色块的灰度值参数范围 time_flag = 0 num_stop = 0 pid_x = pid.PID(80,0.3,0,0,30) #x轴方向的pid控制,pid参数要自己调 pid_y = pid.PID(60,0.3,0,0,30) #y轴方向的pid控制 flag_x_y = 0 prepare_flag = 0 Buzzer = pyb.Pin("P6", pyb.Pin.OUT_PP) ##################各个字母所对应的ASCII值###################### R = ord('R') L = ord('L') S = ord('S') B = ord('B') G = ord('G') E = ord('E') ########################################################### Buzzer.value(1) time.sleep(500) Buzzer.value(0) time.sleep(500) Buzzer.value(1) time.sleep(500) Buzzer.value(0) time.sleep(500) Buzzer.value(1) time.sleep(500) Buzzer.value(0) while(True): print("the task number is 3 now!") img = sensor.snapshot().lens_corr(1.8) blobs = img.find_blobs([red_threshold_03], pixels_threshold=100, merge=True) #寻找目标色块,低于150像素的视为噪声 img.binary([red_threshold_03], invert = True) #二值化处理 if len(blobs) == 2: #如果识别到目标色块 print("the number of blobs is %d" %len(blobs)) if(abs(blobs[0].cx()-80)<5) and \ (abs(blobs[0].cy()-60)<5): time_flag = 1 if flag_x_y == 0 : #调节x与y方向的切换标志 speed_x = pid_x.IncPIDCalc(blobs[0].cx()) # print("speed_x: %f" %speed_x) if speed_x > 0: #说明目标当前x值偏小,无人机偏右,需要向左调整 data_pack.send_cmd(L,speed_x) else: data_pack.send_cmd(R,abs(speed_x)) flag_x_y = 1 #标志位置1,表示下次循环调整y轴方向 else : speed_y = pid_y.IncPIDCalc(blobs[0].cy()) #print("speed_y: %f" %speed_y) if speed_y >= 0: #说明目标当前y值偏小,无人机偏后,需要向前调整 data_pack.send_cmd(G,speed_y) else: data_pack.send_cmd(B,abs(speed_y)) flag_x_y = 0 #标志位置0,表示下次循环调整x轴方向 elif len(blobs) == 0: print("the number of blobs is %d" %len(blobs)) if prepare_flag == 0 or prepare_flag == 2: data_pack.send_cmd(E,0) #没有检测到目标色块,这里让无人机原地罚站 else: data_pack.send_cmd(G,5) else : print("the number of blobs is %d" %len(blobs)) bigBlob = blobs[0] #将第一个色块赋值给最大色块 for blob_temp in blobs: #此循环找出最大色块,进一步滤除噪声 if compareBlob(bigBlob, blob_temp) == -1: bigBlob = blob_temp if prepare_flag == 1 and bigBlob.cy() > 80: data_pack.send_cmd(G,5) elif prepare_flag == 1 and bigBlob.cy() < 40: prepare_flag = 2 if(abs(bigBlob.cx()-80)<5) and \ (abs(bigBlob.cy()-60)<5) and \ prepare_flag == 0: prepare_flag = 1 if(abs(bigBlob.cx()-80)<5) and \ (abs(bigBlob.cy()-60)<5) and \ prepare_flag == 2: time_flag = 1 if prepare_flag == 0 or prepare_flag == 2: if flag_x_y == 0 : #调节x与y方向的切换标志 speed_x = pid_x.IncPIDCalc(bigBlob.cx()) # print("speed_x: %f" %speed_x) if speed_x > 0: #说明目标当前x值偏小,无人机偏右,需要向左调整 data_pack.send_cmd(L,speed_x) else: data_pack.send_cmd(R,abs(speed_x)) flag_x_y = 1 #标志位置1,表示下次循环调整y轴方向 else : speed_y = pid_y.IncPIDCalc(bigBlob.cy()) #print("speed_y: %f" %speed_y) if speed_y >= 0: #说明目标当前y值偏小,无人机偏后,需要向前调整 data_pack.send_cmd(G,speed_y) else: data_pack.send_cmd(B,abs(speed_y)) flag_x_y = 0 #标志位置0,表示下次循环调整x轴方向 else: #准备就绪,进入8区 data_pack.send_cmd(G,15) if time_flag == 1: num_stop += 1 if num_stop >= 120 : #100次差不多5秒钟,降落 data_pack.send_cmd(L,15) time.sleep(100) data_pack.send_cmd(L,15) time.sleep(100) data_pack.send_cmd(L,15) time.sleep(100) num_stop = 0 data_pack.send_cmd(E,0)
-
@kidswong999 这个是task plus
import sensor, image, time, pyb, struct, math import pid, data_pack def compareBlob(blob1, blob2): #比较两个色块大小的函数 tmp = blob1.pixels() - blob2.pixels() if tmp == 0: return 0 elif tmp > 0: return 1 else: return -1 def task_2017_2(): threshold_01 = (0,55) #目标色块的灰度值参数范围 number_period = 0 pid_x = pid.PID(80,0.5,0,0,30) #x轴方向的pid控制,pid参数要自己调 pid_y = pid.PID(60,0.5,0,0,30) #y轴方向的pid控制 flag_x_y = 0 flag_buzzer = 0 stop_flag_car = 0 clock = time.clock() Buzzer = pyb.Pin("P6", pyb.Pin.OUT_PP) uart1 = pyb.UART(1, 115200, timeout_char = 100) #打开串口1 ##################各个字母所对应的ASCII值###################### R = ord('R') L = ord('L') S = ord('S') B = ord('B') G = ord('G') E = ord('E') ########################################################### Buzzer.value(1) time.sleep(400) Buzzer.value(0) time.sleep(400) Buzzer.value(1) time.sleep(400) Buzzer.value(0) time.sleep(400) Buzzer.value(1) time.sleep(400) Buzzer.value(0) time.sleep(400) Buzzer.value(1) time.sleep(400) Buzzer.value(0) while(True): #print("the task number is 1 now!") clock.tick() number_period += 1 if number_period >= 60 : number_period = 0 if stop_flag_car != S: stop_flag_car = uart1.readchar() if stop_flag_car == S: if flag_buzzer == 0: data_pack.send_cmd(E,0) Buzzer.value(1) time.sleep(1000) Buzzer.value(0) flag_buzzer = 1 #time.sleep(1000) # print("landing start!") #print("stop_flag_car : %s" %stop_flag_car) # data_pack.send_cmd(S,0) #print("stop_flag_car : %s" %stop_flag_car) #continue img = sensor.snapshot().lens_corr(1.8) blobs = img.find_blobs([threshold_01], pixels_threshold=100, merge=True) #寻找目标色块,低于150像素的视为噪声 img.binary([threshold_01], invert = True) #二值化处理 if blobs: #如果识别到目标色块 #print(blobs) #在终端打印出blobs的信息 bigBlob = blobs[0] #将第一个色块赋值给最大色块 for blob_temp in blobs: #此循环找出最大色块,进一步滤除噪声 if compareBlob(bigBlob, blob_temp) == -1: bigBlob = blob_temp img.draw_rectangle(bigBlob[0:4]) #画个矩形框标出色块所在区域 img.draw_cross(bigBlob[5], bigBlob[6]) #画个十字架标出色块所在区域的中心点 if flag_x_y == 0 : #调节x与y方向的切换标志 speed_x = pid_x.IncPIDCalc(bigBlob.cx()) # print("speed_x: %f" %speed_x) if speed_x > 0: #说明目标当前x值偏小,无人机偏右,需要向左调整 data_pack.send_cmd(L,speed_x) else: data_pack.send_cmd(R,abs(speed_x)) flag_x_y = 1 #标志位置1,表示下次循环调整y轴方向 else : speed_y = pid_y.IncPIDCalc(bigBlob.cy()) #print("speed_y: %f" %speed_y) if speed_y >= 0: #说明目标当前y值偏小,无人机偏后,需要向前调整 data_pack.send_cmd(G,speed_y) else: data_pack.send_cmd(B,abs(speed_y)) flag_x_y = 0 #标志位置0,表示下次循环调整x轴方向 else: data_pack.send_cmd(S,0) #没有检测到目标色块,这里让无人机原地罚站
-
@kidswong999 这个是pid
import sensor, image, time, math, struct ,pyb,utime class PID: def __init__(self, SetPoint,Proportion,Integral,Derivative,Limit): # WARNING: Don't use PA4-X5 or PA5-X6 as echo pin without a 1k resistor self.SetPoint = SetPoint #设定值 self.Proportion = Proportion #P self.Integral = Integral #I self.Derivative = Derivative #D self.Limit = Limit #限幅 self.LastError = 0 #前1次误差值 self.PrevError = 0 #前2次误差值 self.iError = 0 #当前误差 self.iIncpid = 0 #增量误差 self.Uk = 0 #输出返回\ def IncPIDCalc(self, NextPoint): # 当前误差 self.iError = self.SetPoint - NextPoint # 增量误差 self.iIncpid = (self.Proportion * (self.iError - self.LastError)+ self.Integral * self.iError + self.Derivative * (self.iError - 2 * self.LastError + self.PrevError)) #存储误差,用于下次计算 self.PrevError = self.LastError self.LastError = self.iError self.Uk += self.iIncpid self.Uk = self.Limit_Amplitude(self.Uk) # print("NextPoint : %f" % NextPoint) # print("Uk : %f" % self.Uk) return self.Uk def Limit_Amplitude(self,num): if num > self.Limit : return self.Limit elif num < -self.Limit: return -self.Limit else: return num
-
@kidswong999 这个是data_pack
import sensor, image, time def get_line_k(x1,x2,y1,y2): det_x = x2 - x1 det_y = y2 - y1 if det_x == 0: #考虑斜率无穷大的情况 det_x = 1 return (det_y/det_x) def get_line_b(x1,x2,y1,y2): k = get_line_k(x1,x2,y1,y2) return (y1-(k*x1)) def get_line_cross_x(k1,k2,b1,b2): det_k = k1 - k2 if det_k == 0: return -1 else: return (b2 - b1)/(k1 - k2) def get_line_cross_y(k1,k2,b1,b2): det_k = k1 - k2 if det_k == 0: return -1 else: return (b1*k2 - k1*b2)/(k2 - k1) def get_cross_dot(lines): cross_dot = [0,0] x1 = lines[0].x1() x2 = lines[0].x2() x3 = lines[1].x1() x4 = lines[1].x2() y1 = lines[0].y1() y2 = lines[0].y2() y3 = lines[1].y1() y4 = lines[1].y2() k1 = get_line_k(x1,x2,y1,y2) k2 = get_line_k(x3,x4,y3,y4) b1 = get_line_b(x1,x2,y1,y2) b2 = get_line_b(x3,x4,y3,y4) cross_dot[0] = get_line_cross_x(k1,k2,b1,b2) cross_dot[1] = get_line_cross_y(k1,k2,b1,b2) return cross_dot
-
@ugli 写错了,这个是line_calcu.py
-
@kidswong999 这个才是data_pack
import time, pyb, struct C = ord('C') F = ord('F') G = ord('G') B = ord('B') R = ord('R') L = ord('L') D = ord('D') U = ord('U') E = ord('E') S = ord('S') H = ord('H') uart3 = pyb.UART(3, 500000, timeout_char = 1000) green_led = pyb.LED(2) def send_89(direct,velcity): ''' 功能字为0x89,控制前进(后退)、左(右)、上升(下降)速度大小 speed字段必须正 ''' s = 0xAA+0x8C+direct+(int(velcity/256))+(int(velcity%256)) s = int(s % 256) temp_flow = struct.pack("<BBBBBhB", 0x00, 0xAA, 0x89, 03, direct, int(velcity), s) uart3.write(temp_flow) def send_98(direct,velcity): ''' 功能字为0x98,控制顺(逆)时针转动速度大小 speed字段正负一样 ''' s = 0xAA+0x9B+direct+(int(velcity/256))+(int(velcity%256)) s = int(s % 256) temp_flow = struct.pack("<BBBBBhB", 0x00, 0xAA, 0x98, 03, direct, velcity, s) uart3.write(temp_flow) def send_cmd(direct,velcity): if direct == C or direct == F: send_98(direct,velcity) time.sleep(3) else: send_89(direct,velcity) if direct == S: time.sleep(3)
-
@kidswong999 这个是car_calcu.py
import pyb,struct uart = pyb.UART(3,115200, timeout_char = 1000) def car_run(x1,x2): if x1 > 0 : right_value = x1 else : right_value = x1 if x2 > 0 : left_value = x2 else : left_value = x2 send_rpm(right_value,left_value) def send_rpm(right_value,left_value): left_rpm = int(left_value * 27) right_rpm = int(right_value * 27) left_rpm_low = left_rpm & 0x00ff left_rpm_high = left_rpm >> 8 right_rpm_low = right_rpm & 0x00ff right_rpm_high = right_rpm >> 8 xor = 0x6^0x3^0x4^(left_rpm_low)^(left_rpm_high)^(right_rpm_low)^(right_rpm_high) xor = (int(xor%256)) temp_flow = struct.pack("<BBBBBhhB", 0xaa, 0x55, 0x6, 0x3, 0x4, left_rpm, right_rpm, xor) ret = uart.write(temp_flow) print(left_rpm/27, right_rpm/27)