标志位变化出现问题 无法依靠标志位 正确初始化其他变量
-
标志位变量定义为i时 增减会出错
但是定义为flag 则正确增减
是因为与 此处 临时变量i冲突导致的吗?for i in range(len(blobs)): #目标区域找到的颜色块(线段块)可能不止一个,找到最大的一个,作为本区域内的目标直线 if blobs[i].pixels() > most_pixels: most_pixels = blobs[i].pixels() #merged_blobs[i][4]是这个颜色块的像素总数,如果此颜色块像素总数大于 #most_pixels,则把本区域作为像素总数最大的颜色块。更新most_pixels和largest_blob largest_blob = i
代码目的是循迹
出现bug的代码
# Black Grayscale Line Following Example # # Making a line following robot requires a lot of effort. This example script # shows how to do the machine vision part of the line following robot. You # can use the output from this script to drive a differential drive robot to # follow a line. This script just generates a single turn value that tells # your robot to go left or right. # # For this script to work properly you should point the camera at a line at a # 45 or so degree angle. Please make sure that only the line is within the # camera's field of view. import sensor, image, time, math#调用声明 from pyb import UART import json # Tracks a black line. Use [(128, 255)] for a tracking a white line. # GRAYSCALE_THRESHOLD = [(0, 50)] GRAYSCALE_THRESHOLD = [(0, 80)] #设置阈值,如果是黑线,GRAYSCALE_THRESHOLD = [(0, 64)]; #如果是白线,GRAYSCALE_THRESHOLD = [(128,255)] #GRAYSCALE_THRESHOLD = [(190,255)] # Each roi is (x, y, w, h). The line detection algorithm will try to find the # centroid of the largest blob in each roi. The x position of the centroids # will then be averaged with different weights where the most weight is assigned # to the roi near the bottom of the image and less to the next roi and so on. # ROIS = [ # [ROI, weight] # (0, 40, 80, 15, 0.7), # You'll need to tweak the weights for you app # (0, 20, 80, 15, 0.3), # depending on how your robot is setup. # (0, 00, 80, 15, 0.1) # ] ROIS = [ # [ROI, weight] (0, 100, 160, 30, 0.7), # You'll need to tweak the weights for you app # 根据线宽 修改高度 # 远处给的权重更大 (0, 050, 160, 30, 0.3), # depending on how your robot is setup. # 权重后期需要调整 # 应该需要使用全宽度160(即分辨率对应的最大值) 否则转弯貌似无法识别 (0, 000, 160, 30, 0.1) ] # ROIS = [ # [ROI, weight] # (20, 40, 40, 15, 0.1), # You'll need to tweak the weights for you app # (20, 20, 40, 15, 0.3), # depending on how your robot is setup. # (20, 00, 40, 15, 0.7) # ] #roi代表三个取样区域,(x,y,w,h,weight),代表左上顶点(x,y)宽高分别为w和h的矩形, #weight为当前矩形的权值。注意本例程采用的QQVGA图像大小为160x120,roi即把图像横分成三个矩形。 #三个矩形的阈值要根据实际情况进行调整,离机器人视野最近的矩形权值要最大, #如上图的最下方的矩形,即(0, 100, 160, 20, 0.7) # Compute the weight divisor (we're computing this so you don't have to make weights add to 1). weight_sum = 0 #权值和初始化 for r in ROIS: weight_sum += r[4] # r[4] is the roi weight. print("weight_sum_max") print(weight_sum) weight_sum = 0 #权值和初始化 current_x=current_y=0 #计算权值和。遍历上面的三个矩形,r[4]即每个矩形的权值。 # Camera setup... sensor.reset() # Initialize the camera sensor. # sensor.set_pixformat(sensor.RGB565) # use grayscale. sensor.set_pixformat(sensor.GRAYSCALE) # use grayscale. sensor.set_framesize(sensor.QQVGA) # use QQVGA for speed. # sensor.set_framesize(sensor.QQQVGA) # use QQVGA for speed. sensor.skip_frames(300) # Let new settings take affect. #不要太小 否则容易卡顿 sensor.set_auto_gain(False) # must be turned off for color tracking sensor.set_auto_whitebal(False) # must be turned off for color tracking #关闭白平衡 clock = time.clock() # Tracks FPS. uart = UART(3, 9600)#波特率两边要设置成一样 while(True): clock.tick() # Track elapsed milliseconds between snapshots(). img = sensor.snapshot() # Take a picture and return the image. # uart = UART(3,19200) # uart.init(19200,bits=8,parity=None,stop=1)#init with given parameters centroid_sum = centroid_sum_y = 0 i=0 #print("i") #print(i) #利用颜色识别分别寻找三个矩形区域内的线段 weight_sum = 1 #权值和初始化 for r in ROIS: blobs = img.find_blobs(GRAYSCALE_THRESHOLD, roi=r[0:4], merge=False) # blobs = img.find_blobs(GRAYSCALE_THRESHOL, roi=r[0:4], merge=True) # r[0:4] is roi tuple. #找到视野中的线,merge=true,将找到的图像区域合并成一个 # 在每一个ROI都会执行下述语句 所以总共4个ROI #目标区域找到直线 if blobs: i+=1 print("flag ") print(i) if i ==1 : weight_sum = 0 # Find the index of the blob with the most pixels. most_pixels = 0 largest_blob = 0 for i in range(len(blobs)): #目标区域找到的颜色块(线段块)可能不止一个,找到最大的一个,作为本区域内的目标直线 if blobs[i].pixels() > most_pixels: most_pixels = blobs[i].pixels() #merged_blobs[i][4]是这个颜色块的像素总数,如果此颜色块像素总数大于 #most_pixels,则把本区域作为像素总数最大的颜色块。更新most_pixels和largest_blob largest_blob = i # Draw a rect around the blob. img.draw_rectangle(blobs[largest_blob].rect()) img.draw_rectangle((0,0,20, 20)) #将此区域的像素数最大的颜色块画矩形和十字形标记出来 img.draw_cross(blobs[largest_blob].cx(), blobs[largest_blob].cy()) centroid_sum += blobs[largest_blob].cx() * r[4] # r[4] is the roi weight. #计算centroid_sum,centroid_sum等于每个区域的最大颜色块的中心点的x坐标值乘本区域的权值 centroid_sum_y += blobs[largest_blob].cy() * r[4] # r[4] is the roi weight. print("centroid_x_proportion") print(centroid_sum) weight_sum += r[4] print("weight_sum_temp") print(weight_sum) if(r[4]==0.1): # 近处权重更小 计算当前位置 current_x=blobs[largest_blob].cx() current_y=blobs[largest_blob].cy() print("current_x") print(current_x) print("current_y") print(current_y) print("weight ") print(weight_sum) # print("s") center_pos = (centroid_sum / weight_sum) # Determine center of line. center_pos_y = (centroid_sum_y / weight_sum) #中间公式 print("center_pos_x ") print(center_pos) print("center_pos_y ") print(center_pos_y) # Convert the center_pos to a deflection angle. We're using a non-linear # operation so that the response gets stronger the farther off the line we # are. Non-linear operations are good to use on the output of algorithms # like this to cause a response "trigger". deflection_angle = 0 #机器人应该转的角度 # The 80 is from half the X res, the 60 is from half the Y res. The # equation below is just computing the angle of a triangle where the # opposite side of the triangle is the deviation of the center position # from the center and the adjacent side is half the Y res. This limits # the angle output to around -45 to 45. (It's not quite -45 and 45). #deflection_angle = -math.atan((center_pos-80)/60) # deflection_angle = -math.atan((center_pos-40)/30) if center_pos_y-current_y !=0 : deflection_angle = -math.atan((center_pos-current_x)/(center_pos_y-current_y)) #角度计算.80 60 分别为图像宽和高的一半,图像大小为QQVGA 160x120. #注意计算得到的是弧度值 print("arc") print(deflection_angle) #1 Convert angle in radians to degrees. deflection_angle = math.degrees(deflection_angle) print("angle") print(deflection_angle) #将计算结果的弧度值转化为角度值 A=deflection_angle print("Turn Angle: %d" % int (A))#输出时强制转换类型为int #print("Turn Angle: %d" % char (A)) # Now you have an angle telling you how much to turn the robot by which # incorporates the part of the line nearest to the robot and parts of # the line farther away from the robot for a better prediction. print("Turn Angle: %f" % deflection_angle) #将结果打印在terminal中 # uart_buf = bytearray([int (A)]) # #uart_buf = bytearray([char (A)]) # #uart.write(uart_buf)#区别于uart.writechar是输出字符型,这个函数可以输出int型 # uart.write(uart_buf) # uart.writechar(0x41)#通信协议帧尾 # uart.writechar(0x42) if int (A) > 0 : A=int(A)*10 else: A=abs(int(A))*10+1 data=str(A) print("transform") print(data) data_out = json.dumps(set(data))#将data转化为json uart.write('?'+data+'!')#写到缓冲区,由arduino进行读取 # uart.write('?'+data+';'+data+'!')#写到缓冲区,由arduino进行读取 #print('you send:',data_out)#写到串口监视端,让你能够看到数据 time.sleep(1)#延时 print("clock ") print(clock.fps()) # Note: Your OpenMV Cam runs about half as fast while # connected to your computer. The FPS should increase once disconnected.
修改后的代码
# Black Grayscale Line Following Example # # Making a line following robot requires a lot of effort. This example script # shows how to do the machine vision part of the line following robot. You # can use the output from this script to drive a differential drive robot to # follow a line. This script just generates a single turn value that tells # your robot to go left or right. # # For this script to work properly you should point the camera at a line at a # 45 or so degree angle. Please make sure that only the line is within the # camera's field of view. import sensor, image, time, math#调用声明 from pyb import UART import json # Tracks a black line. Use [(128, 255)] for a tracking a white line. # GRAYSCALE_THRESHOLD = [(0, 50)] GRAYSCALE_THRESHOLD = [(0, 80)] #设置阈值,如果是黑线,GRAYSCALE_THRESHOLD = [(0, 64)]; #如果是白线,GRAYSCALE_THRESHOLD = [(128,255)] #GRAYSCALE_THRESHOLD = [(190,255)] # Each roi is (x, y, w, h). The line detection algorithm will try to find the # centroid of the largest blob in each roi. The x position of the centroids # will then be averaged with different weights where the most weight is assigned # to the roi near the bottom of the image and less to the next roi and so on. # ROIS = [ # [ROI, weight] # (0, 40, 80, 15, 0.7), # You'll need to tweak the weights for you app # (0, 20, 80, 15, 0.3), # depending on how your robot is setup. # (0, 00, 80, 15, 0.1) # ] ROIS = [ # [ROI, weight] (0, 100, 160, 30, 0.7), # You'll need to tweak the weights for you app # 根据线宽 修改高度 # 远处给的权重更大 (0, 050, 160, 30, 0.3), # depending on how your robot is setup. # 权重后期需要调整 # 应该需要使用全宽度160(即分辨率对应的最大值) 否则转弯貌似无法识别 (0, 000, 160, 30, 0.1) ] # ROIS = [ # [ROI, weight] # (20, 40, 40, 15, 0.1), # You'll need to tweak the weights for you app # (20, 20, 40, 15, 0.3), # depending on how your robot is setup. # (20, 00, 40, 15, 0.7) # ] #roi代表三个取样区域,(x,y,w,h,weight),代表左上顶点(x,y)宽高分别为w和h的矩形, #weight为当前矩形的权值。注意本例程采用的QQVGA图像大小为160x120,roi即把图像横分成三个矩形。 #三个矩形的阈值要根据实际情况进行调整,离机器人视野最近的矩形权值要最大, #如上图的最下方的矩形,即(0, 100, 160, 20, 0.7) # Compute the weight divisor (we're computing this so you don't have to make weights add to 1). weight_sum = 0 #权值和初始化 for r in ROIS: weight_sum += r[4] # r[4] is the roi weight. print("weight_sum_max") print(weight_sum) weight_sum = 0 #权值和初始化 current_x=current_y=0 #计算权值和。遍历上面的三个矩形,r[4]即每个矩形的权值。 # Camera setup... sensor.reset() # Initialize the camera sensor. # sensor.set_pixformat(sensor.RGB565) # use grayscale. sensor.set_pixformat(sensor.GRAYSCALE) # use grayscale. sensor.set_framesize(sensor.QQVGA) # use QQVGA for speed. # sensor.set_framesize(sensor.QQQVGA) # use QQVGA for speed. sensor.skip_frames(300) # Let new settings take affect. #不要太小 否则容易卡顿 sensor.set_auto_gain(False) # must be turned off for color tracking sensor.set_auto_whitebal(False) # must be turned off for color tracking #关闭白平衡 clock = time.clock() # Tracks FPS. uart = UART(3, 9600)#波特率两边要设置成一样 while(True): clock.tick() # Track elapsed milliseconds between snapshots(). img = sensor.snapshot() # Take a picture and return the image. # uart = UART(3,19200) # uart.init(19200,bits=8,parity=None,stop=1)#init with given parameters centroid_sum = centroid_sum_y = 0 flag=0 #print("i") #print(i) #利用颜色识别分别寻找三个矩形区域内的线段 weight_sum = 1 #权值和初始化 for r in ROIS: blobs = img.find_blobs(GRAYSCALE_THRESHOLD, roi=r[0:4], merge=False) # blobs = img.find_blobs(GRAYSCALE_THRESHOL, roi=r[0:4], merge=True) # r[0:4] is roi tuple. #找到视野中的线,merge=true,将找到的图像区域合并成一个 # 在每一个ROI都会执行下述语句 所以总共4个ROI #目标区域找到直线 if blobs: flag+=1 # 不要用i 用flag print("flag ") print(flag) if flag ==1 : weight_sum = 0 # Find the index of the blob with the most pixels. most_pixels = 0 largest_blob = 0 for i in range(len(blobs)): #目标区域找到的颜色块(线段块)可能不止一个,找到最大的一个,作为本区域内的目标直线 if blobs[i].pixels() > most_pixels: most_pixels = blobs[i].pixels() #merged_blobs[i][4]是这个颜色块的像素总数,如果此颜色块像素总数大于 #most_pixels,则把本区域作为像素总数最大的颜色块。更新most_pixels和largest_blob largest_blob = i # Draw a rect around the blob. img.draw_rectangle(blobs[largest_blob].rect()) img.draw_rectangle((0,0,20, 20)) #将此区域的像素数最大的颜色块画矩形和十字形标记出来 img.draw_cross(blobs[largest_blob].cx(), blobs[largest_blob].cy()) centroid_sum += blobs[largest_blob].cx() * r[4] # r[4] is the roi weight. #计算centroid_sum,centroid_sum等于每个区域的最大颜色块的中心点的x坐标值乘本区域的权值 centroid_sum_y += blobs[largest_blob].cy() * r[4] # r[4] is the roi weight. print("centroid_x_proportion") print(centroid_sum) weight_sum += r[4] print("weight_sum_temp") print(weight_sum) if(r[4]==0.1): # 近处权重更小 计算当前位置 current_x=blobs[largest_blob].cx() current_y=blobs[largest_blob].cy() print("current_x") print(current_x) print("current_y") print(current_y) print("weight ") print(weight_sum) # print("s") center_pos = (centroid_sum / weight_sum) # Determine center of line. center_pos_y = (centroid_sum_y / weight_sum) #中间公式 print("center_pos_x ") print(center_pos) print("center_pos_y ") print(center_pos_y) # Convert the center_pos to a deflection angle. We're using a non-linear # operation so that the response gets stronger the farther off the line we # are. Non-linear operations are good to use on the output of algorithms # like this to cause a response "trigger". deflection_angle = 0 #机器人应该转的角度 # The 80 is from half the X res, the 60 is from half the Y res. The # equation below is just computing the angle of a triangle where the # opposite side of the triangle is the deviation of the center position # from the center and the adjacent side is half the Y res. This limits # the angle output to around -45 to 45. (It's not quite -45 and 45). #deflection_angle = -math.atan((center_pos-80)/60) # deflection_angle = -math.atan((center_pos-40)/30) if center_pos_y-current_y !=0 : deflection_angle = -math.atan((center_pos-current_x)/(center_pos_y-current_y)) #角度计算.80 60 分别为图像宽和高的一半,图像大小为QQVGA 160x120. #注意计算得到的是弧度值 print("arc") print(deflection_angle) #1 Convert angle in radians to degrees. deflection_angle = math.degrees(deflection_angle) print("angle") print(deflection_angle) #将计算结果的弧度值转化为角度值 A=deflection_angle print("Turn Angle: %d" % int (A))#输出时强制转换类型为int #print("Turn Angle: %d" % char (A)) # Now you have an angle telling you how much to turn the robot by which # incorporates the part of the line nearest to the robot and parts of # the line farther away from the robot for a better prediction. print("Turn Angle: %f" % deflection_angle) #将结果打印在terminal中 # uart_buf = bytearray([int (A)]) # #uart_buf = bytearray([char (A)]) # #uart.write(uart_buf)#区别于uart.writechar是输出字符型,这个函数可以输出int型 # uart.write(uart_buf) # uart.writechar(0x41)#通信协议帧尾 # uart.writechar(0x42) if int (A) > 0 : A=int(A)*10 else: A=abs(int(A))*10+1 data=str(A) print("transform") print(data) data_out = json.dumps(set(data))#将data转化为json uart.write('?'+data+'!')#写到缓冲区,由arduino进行读取 # uart.write('?'+data+';'+data+'!')#写到缓冲区,由arduino进行读取 #print('you send:',data_out)#写到串口监视端,让你能够看到数据 time.sleep(1)#延时 print("clock ") print(clock.fps()) # Note: Your OpenMV Cam runs about half as fast while # connected to your computer. The FPS should increase once disconnected.
-
变量i的范围是本函数,你第90行定义的i,范围是整个文件,相当于全局变量。第115行是直接把i给改动了。