• OpenMV VSCode 扩展发布了,在插件市场直接搜索OpenMV就可以安装
  • 如果有产品硬件故障问题,比如无法开机,论坛很难解决。可以直接找售后维修
  • 发帖子之前,请确认看过所有的视频教程,https://singtown.com/learn/ 和所有的上手教程http://book.openmv.cc/
  • 每一个新的提问,单独发一个新帖子
  • 帖子需要目的,你要做什么?
  • 如果涉及代码,需要报错提示全部代码文本,请注意不要贴代码图片
  • 必看:玩转星瞳论坛了解一下图片上传,代码格式等问题。
  • 如何自动调整曝光时间 使得光源在不同的亮度条件下产生的效果都是一样的



    • 请在这里粘贴代码
      

      Template Matching Example - Normalized Cross Correlation (NCC)

      This example shows off how to use the NCC feature of your OpenMV Cam to match

      image patches to parts of an image... expect for extremely controlled enviorments

      NCC is not all to useful.

      WARNING: NCC supports needs to be reworked! As of right now this feature needs

      a lot of work to be made into somethin useful. This script will reamin to show

      that the functionality exists, but, in its current state is inadequate.

      import time, sensor, image
      from image import SEARCH_EX, SEARCH_DS
      from pyb import UART
      import json
      #从imgae模块引入SEARCH_EX和SEARCH_DS。使用from import仅仅引入SEARCH_EX,
      #SEARCH_DS两个需要的部分,而不把image模块全部引入。

      Reset sensor

      sensor.reset()

      Set sensor settings

      sensor.set_contrast(1)
      sensor.set_gainceiling(16)

      Max resolution for template matching with SEARCH_EX is QQVGA

      sensor.set_framesize(sensor.QVGA)

      You can set windowing to reduce the search image.

      #sensor.set_windowing(((640-80)//2, (480-60)//2, 80, 60))
      sensor.set_pixformat(sensor.GRAYSCALE)

      #加载模板图片
      sensor.skip_frames(10) # Let new settings take affect.
      sensor.set_auto_whitebal(True) # turn this off.
      sensor.set_auto_exposure(False,
      exposure_us = 37945)

      sensor.set_auto_gain(True, gain_db_ceiling = 7.0) # Default gain.

      clock = time.clock() # Tracks FPS.

      while (True):
      clock.tick()
      img = sensor.snapshot()
      print(clock.fps(),sensor.get_gain_db())0_1614504693395_M4}YT385~(NJAJ4WTH(WN{B.png 0_1614504711174_AIJIK8}WRVJ3JT~~5`W7)3G.png



    • @rdig如何自动调整曝光时间 使得光源在不同的亮度条件下产生的效果都是一样的 中说:

      这里

      光源不论多强都能实现下面那张图的效果