导航

    • 登录
    • 搜索
    • 版块
    • 产品
    • 教程
    • 论坛
    • 淘宝
    1. 主页
    2. 我叫panhe
    我
    • 举报资料
    • 资料
    • 关注
    • 粉丝
    • 屏蔽
    • 帖子
    • 楼层
    • 最佳
    • 群组

    我叫panhe

    @我叫panhe

    0
    声望
    9
    楼层
    604
    资料浏览
    0
    粉丝
    0
    关注
    注册时间 最后登录

    我叫panhe 关注

    我叫panhe 发布的帖子

    • RE: 使用函数img.histogram.get_threhsold()错误

      @kidswong999

      # Find Rects Example
      #
      # This example shows off how to find rectangles in the image using the quad threshold
      # detection code from our April Tags code. The quad threshold detection algorithm
      # detects rectangles in an extremely robust way and is much better than Hough
      # Transform based methods. For example, it can still detect rectangles even when lens
      # distortion causes those rectangles to look bent. Rounded rectangles are no problem!
      # (But, given this the code will also detect small radius circles too)...
      
      import sensor, image, time, lcd
      
      sensor.reset()
      sensor.set_pixformat(sensor.RGB565) # grayscale is faster (160x120 max on OpenMV-M7)
      sensor.set_framesize(sensor.QQVGA)
      sensor.skip_frames(time = 2000)
      clock = time.clock()
      lcd.init()
      
      roi = (80,0,80,120)#搜索矩形的图像区域
      
      #kernel_size = 1 # kernel width = (size*2)+1, kernel height = (size*2)+1
      #kernel = [-1, -1, -1,\
      #         -1, +9, -1,\
      #         -1, -1, -1]
      
      
      
      while(True):
          clock.tick()
          img = sensor.snapshot().lens_corr(1.0)
      #   th = img.histogram.get_threhsold([roi])
      
      #   img.binary([th],invert = True)
      #   img.find_edges(image.EDGE_CANNY, threshold=(50, 80))
      #   img.laplacian(2)
      
      
      
          # `threshold` below should be set to a high enough value to filter out noise
          # rectangles detected in the image which have low edge magnitudes. Rectangles
          # have larger edge magnitudes the larger and more contrasty they are...
      
          for r in img.find_rects(roi,threshold = 10000):
              statistics = img.get_statistics(roi=r.rect())
              print(statistics)
              if statistics.mean() <= 50:
                 img.draw_rectangle(r.rect(), color = (255, 0, 0))
                 for p in r.corners(): img.draw_circle(p[0], p[1], 5, color = (0, 255, 0))
              lcd.display(img)
              print(r.rect())
      
          print("FPS %f" % clock.fps())
      
      
      发布在 OpenMV Cam
      我
      我叫panhe
    • RE: 使用函数img.histogram.get_threhsold()错误
      # Find Rects Example
      #
      # This example shows off how to find rectangles in the image using the quad threshold
      # detection code from our April Tags code. The quad threshold detection algorithm
      # detects rectangles in an extremely robust way and is much better than Hough
      # Transform based methods. For example, it can still detect rectangles even when lens
      # distortion causes those rectangles to look bent. Rounded rectangles are no problem!
      # (But, given this the code will also detect small radius circles too)...
      
      import sensor, image, time, lcd
      
      sensor.reset()
      sensor.set_pixformat(sensor.RGB565) # grayscale is faster (160x120 max on OpenMV-M7)
      sensor.set_framesize(sensor.QQVGA)
      sensor.skip_frames(time = 2000)
      clock = time.clock()
      lcd.init()
      
      roi = (80,0,80,120)#搜索矩形的图像区域
      
      #kernel_size = 1 # kernel width = (size*2)+1, kernel height = (size*2)+1
      #kernel = [-1, -1, -1,\
      #         -1, +9, -1,\
      #         -1, -1, -1]
      
      
      
      while(True):
          clock.tick()
          img = sensor.snapshot().lens_corr(1.0)
      #   th = img.histogram.get_threhsold([roi])
      
      #   img.binary([th],invert = True)
      #   img.find_edges(image.EDGE_CANNY, threshold=(50, 80))
      #   img.laplacian(2)
      
      
      
          # `threshold` below should be set to a high enough value to filter out noise
          # rectangles detected in the image which have low edge magnitudes. Rectangles
          # have larger edge magnitudes the larger and more contrasty they are...
      
          for r in img.find_rects(roi,threshold = 10000):
              statistics = img.get_statistics(roi=r.rect())
              print(statistics)
              if statistics.mean() <= 50:
                 img.draw_rectangle(r.rect(), color = (255, 0, 0))
                 for p in r.corners(): img.draw_circle(p[0], p[1], 5, color = (0, 255, 0))
              lcd.display(img)
              print(r.rect())
      
          print("FPS %f" % clock.fps())
      
      
      发布在 OpenMV Cam
      我
      我叫panhe
    • 使用函数img.histogram.get_threhsold()错误

      0_1536655839403_OX.png
      想实现自适应阈值对图像进行阈值分割,使用img.histogram.get_threhsold()函数得到阈值时出现错误提示: AttributeError:'bound_method' object has no attribute 'get_threshold',不知道是不是自己函数写错了,不知道有没有人可以帮忙解惑一下

      while(True):
          clock.tick()
          img = sensor.snapshot().lens_corr(1.0)
      #   image.get_histogram()
          th = img.histogram.get_threhsold([roi])
      #   th = (42, 100, -128, 127, -128, 127)
          img.binary([th],invert = True)
      
      发布在 OpenMV Cam
      我
      我叫panhe
    • RE: 请问下除了例程中的几个feature能用其他的图像特征吗比如surf之类的

      @kidswong999 Openmv内置的一些图像算法在实际场景中应用的比较吃力,基本上精度很难达到要求。

      发布在 OpenMV Cam
      我
      我叫panhe
    • RE: 请问下除了例程中的几个feature能用其他的图像特征吗比如surf之类的

      或者能用svm分类吗?

      发布在 OpenMV Cam
      我
      我叫panhe
    • RE: openmv能识别手写数字吗?

      @yuan 请问下如何训练一个比较小的lenet模型呢?

      发布在 OpenMV Cam
      我
      我叫panhe
    • RE: openmv能识别手写数字吗?

      请问下如何训练一个比较小的lenet模型呢?

      发布在 OpenMV Cam
      我
      我叫panhe
    • 请问下除了例程中的几个feature能用其他的图像特征吗比如surf之类的

      主要是想实现数字的识别,想通过一些图像特征来识别

      发布在 OpenMV Cam
      我
      我叫panhe