导航

    • 登录
    • 搜索
    • 版块
    • 产品
    • 教程
    • 论坛
    • 淘宝
    1. 主页
    2. xhau
    X
    • 举报资料
    • 资料
    • 关注
    • 粉丝
    • 屏蔽
    • 帖子
    • 楼层
    • 最佳
    • 群组

    xhau

    @xhau

    0
    声望
    2
    楼层
    337
    资料浏览
    0
    粉丝
    0
    关注
    注册时间 最后登录

    xhau 关注

    xhau 发布的帖子

    • RE: 使用云台追踪小球算法的时候,云台抖动得特别厉害,请问是什么原因呢?有解决方法吗?

      @kidswong999 只需要更改P吗

      发布在 OpenMV Cam
      X
      xhau
    • 请问如何将追小球云台和测距代码放在一起使用
      import sensor, image, time
      
      from pid import PID
      from pyb import Servo
      
      pan_servo=Servo(1)#下部舵机
      tilt_servo=Servo(2)#上部舵机
      
      pan_servo.calibration(500,2500,500)
      tilt_servo.calibration(500,2500,500)
      
      red_threshold  = (16, 61, 22, 64, 25, 55)
      
      pan_pid = PID(p=0.08, i=0, imax=90) #脱机运行或者禁用图像传输,使用这个PID
      tilt_pid = PID(p=0.04, i=0, imax=90) #脱机运行或者禁用图像传输,使用这个PID
      
      
      sensor.reset() # Initialize the camera sensor.
      sensor.set_pixformat(sensor.RGB565) # use RGB565.
      sensor.set_framesize(sensor.QVGA) # use QQVGA for speed.
      sensor.skip_frames(10) # Let new settings take affect.
      sensor.set_auto_whitebal(False) # turn this off.
      clock = time.clock() # Tracks FPS.
      
      def find_max(blobs):
          max_size=0
          for blob in blobs:
              if blob[2]*blob[3] > max_size:
                  max_blob=blob
                  max_size = blob[2]*blob[3]
          return max_blob
      
      
      while(True):
          clock.tick() # Track elapsed milliseconds between snapshots().
          img = sensor.snapshot() # Take a picture and return the image.
      
          blobs = img.find_blobs([red_threshold])
          if blobs:
              max_blob = find_max(blobs)
              pan_error = max_blob.cx()-img.width()/2
              tilt_error = max_blob.cy()-img.height()/2
      
             # print("pan_error: ", pan_error)
      
              img.draw_rectangle(max_blob.rect()) # rect
              img.draw_cross(max_blob.cx(), max_blob.cy()) # cx, cy
      
              pan_output=pan_pid.get_pid(pan_error,1)/2
              tilt_output=tilt_pid.get_pid(tilt_error,1)
              #print("pan_output",pan_output)
              pan_servo.angle(pan_servo.angle()+pan_output)
              tilt_servo.angle(tilt_servo.angle()-tilt_output)
              print("pan_servo.angle:",pan_servo.angle())
              
      
      
      # Measure the distance
      #
      # This example shows off how to measure the distance through the size in imgage
      # This example in particular looks for yellow pingpong ball.
      
      import sensor, image, time
      
      # For color tracking to work really well you should ideally be in a very, very,
      # very, controlled enviroment where the lighting is constant...
      red_threshold   = ( 16, 61, 22, 64, 25, 55)
      # You may need to tweak the above settings for tracking green things...
      # Select an area in the Framebuffer to copy the color settings.
      
      sensor.reset() # Initialize the camera sensor.
      sensor.set_pixformat(sensor.RGB565) # use RGB565.
      sensor.set_framesize(sensor.QQVGA) # use QQVGA for speed.
      sensor.skip_frames(10) # Let new settings take affect.
      sensor.set_auto_whitebal(False) # turn this off.
      clock = time.clock() # Tracks FPS.
      
      K=550#the value should be measured 24*30
      
      while(True):
          clock.tick() # Track elapsed milliseconds between snapshots().
          img = sensor.snapshot() # Take a picture and return the image.
      
          blobs = img.find_blobs([red_threshold])
          if len(blobs) == 1:
              # Draw a rect around the blob.
              b = blobs[0]
              img.draw_rectangle(b[0:4]) # rect
              img.draw_cross(b[5], b[6]) # cx, cy
              Lm = (b[2]+b[3])/2
              length = K/Lm
              print(length)
              #print(Lm)
      
          #print(clock.fps()) # Note: Your OpenMV Cam runs about half as fast while
          # connected to your computer. The FPS should increase once disconnected.
      
      
      
      发布在 OpenMV Cam
      X
      xhau