导航

    • 登录
    • 搜索
    • 版块
    • 产品
    • 教程
    • 论坛
    • 淘宝
    1. 主页
    2. wy64
    W
    • 举报资料
    • 资料
    • 关注
    • 粉丝
    • 屏蔽
    • 帖子
    • 楼层
    • 最佳
    • 群组

    wy64

    @wy64

    0
    声望
    2
    楼层
    4
    资料浏览
    0
    粉丝
    0
    关注
    注册时间 最后登录

    wy64 关注

    wy64 发布的帖子

    • RuntimeError:Sensor control failed.怎么解决,固件版本是最新的,运行示例代码没问题

      0_1753106469779_70BC5AAB@94426F0A.0D2C7E68.png

      # Template Matching Example - Normalized Cross Correlation (NCC)
      #
      # This example shows off how to use the NCC feature of your OpenMV Cam to match
      # image patches to parts of an image... expect for extremely controlled enviorments
      # NCC is not all to useful.
      #
      # WARNING: NCC supports needs to be reworked! As of right now this feature needs
      # a lot of work to be made into somethin useful. This script will reamin to show
      # that the functionality exists, but, in its current state is inadequate.
      
      import time, sensor, image,ustruct
      from pyb import UART,LED
      from image import SEARCH_EX, SEARCH_DS
      #从imgae模块引入SEARCH_EX和SEARCH_DS。使用from import仅仅引入SEARCH_EX,
      #SEARCH_DS两个需要的部分,而不把image模块全部引入。
      
      # Reset sensor
      sensor.reset()
      
      # Set sensor settings
      sensor.set_contrast(1)
      sensor.set_gainceiling(16)
      # Max resolution for template matching with SEARCH_EX is QQVGA
      sensor.set_framesize(sensor.QQVGA)
      # You can set windowing to reduce the search image.
      #sensor.set_windowing(((640-80)//2, (480-60)//2, 80, 60))
      sensor.set_pixformat(sensor.GRAYSCALE)
      
      
      LED(1).on()
      LED(2).on()
      LED(3).on()
      # Load template.
      # Template should be a small (eg. 32x32 pixels) grayscale image.
      template1 = image.Image("/1.pgm")
      template2 = image.Image("/2.pgm")
      templates3 = ["/3.pgm","/3_1.pgm","/3_2.pgm","/3_3.pgm","/3_4.pgm","/3_5.pgm","/3_6.pgm","/3_7.pgm","/3_8.pgm"]
      templates4 = ["/4.pgm","/4_1.pgm","/4_2.pgm","/4_3.pgm","/4_4.pgm","/4_5.pgm","/4_6.pgm","/4_7.pgm","/4_8.pgm"]
      templates5 = ["/5.pgm","/5_1.pgm","/5_2.pgm","/5_3.pgm","/5_4.pgm","/5_5.pgm","/5_6.pgm","/5_7.pgm","/5_8.pgm"]
      templates6 = ["/6.pgm","/6_1.pgm","/6_2.pgm","/6_3.pgm","/6_4.pgm","/6_5.pgm","/6_6.pgm","/6_7.pgm","/6_8.pgm"]
      templates7 = ["/7.pgm","/7_1.pgm","/7_2.pgm","/7_3.pgm","/7_4.pgm","/7_5.pgm","/7_6.pgm","/7_7.pgm","/7_8.pgm"]
      templates8 = ["/8.pgm","/8_1.pgm","/8_2.pgm","/8_3.pgm","/8_4.pgm","/8_5.pgm","/8_6.pgm","/8_7.pgm","/8_8.pgm"]
      #加载模板图片
      
      clock = time.clock()
      uart = UART(3,115200)   #定义串口3变量
      uart.init(115200, bits=8, parity=None, stop=1) # init with given parameters
      
      def outuart(x,num):
          global uart
          #frame=[0x2C,18,cx%0xff,int(cx/0xff),cy%0xff,int(cy/0xff),0x5B];
          #data = bytearray(frame)
          data = ustruct.pack("<bbhhhhb",      #格式为俩个字符俩个短整型(2字节)
                         0x2C,                      #帧头1
                         0x12,                      #帧头2
                         int(x), # up sample by 4   #数据1
                         int(num), # up sample by 4    #数据2
                         int(0), # up sample by 4    #数据1
                         int(0), # up sample by 4    #数据2
                         0x5B)
          for x in range(5):
              uart.write(data)#必须要传入一个字节数组
              time.sleep_ms(1)
              print(num)
      
      # Run template matching
      while (True):
          clock.tick()
          img = sensor.snapshot()
          num=0
          # find_template(template, threshold, [roi, step, search])
          # ROI: The region of interest tuple (x, y, w, h).
          # Step: The loop step used (y+=step, x+=step) use a bigger step to make it faster.
          # Search is either image.SEARCH_EX for exhaustive search or image.SEARCH_DS for diamond search
          #
          # Note1: ROI has to be smaller than the image and bigger than the template.
          # Note2: In diamond search, step and ROI are both ignored.
          r = img.find_template(template1, 0.70, step=5, search=SEARCH_EX) #, roi=(10, 0, 60, 60))
          #find_template(template, threshold, [roi, step, search]),threshold中
          #的0.7是相似度阈值,roi是进行匹配的区域(左上顶点为(10,0),长80宽60的矩形),
          #注意roi的大小要比模板图片大,比frambuffer小。
          #把匹配到的图像标记出来
          if r:
              print(r)
              #img.draw_rectangle(r)
              print('1')
              num=1
              outuart(0,num)
              for x in range(5):
                  LED(1).on()
                  LED(2).off()
                  LED(3).off()
                  time.sleep_ms(100)
                  LED(1).on()
                  LED(2).on()
                  LED(3).on()
                  time.sleep_ms(100)
      
          r2_0 = img.find_template(template2, 0.70, step=5, search=SEARCH_EX)
          if r2_0:
              print(r2_0)
              #img.draw_rectangle(r1_3)
              print('2')
              num=2
              outuart(0,num)
              for x in range(5):
                  LED(1).on()
                  LED(2).off()
                  LED(3).off()
                  time.sleep_ms(100)
                  LED(1).on()
                  LED(2).on()
                  LED(3).on()
                  time.sleep_ms(100)
      
          r3_0 = img.find_template(image.Image(templates3[0]), 0.70, step=5, search=SEARCH_EX)
          if r3_0:
              print(r3_0)
              #img.draw_rectangle(r1_1)
              print('3')
              num=3
              outuart(0,num)
              for x in range(5):
                  LED(1).on()
                  LED(2).off()
                  LED(3).off()
                  time.sleep_ms(100)
                  LED(1).on()
                  LED(2).on()
                  LED(3).on()
                  time.sleep_ms(100)
      
        
      
      
      发布在 OpenMV Cam
      W
      wy64