W
wr63
@wr63
0
声望
3
楼层
54
资料浏览
0
粉丝
0
关注
wr63 发布的帖子
-
最后blobs出问题了,怎么把tuple弄成int
# Edge Impulse - OpenMV FOMO Object Detection Example # # This work is licensed under the MIT license. # Copyright (c) 2013-2024 OpenMV LLC. All rights reserved. # https://github.com/openmv/openmv/blob/master/LICENSE import sensor, image, time, os, ml, math, uos, gc from ulab import numpy as np sensor.reset() # Reset and initialize the sensor. sensor.set_pixformat(sensor.RGB565) # Set pixel format to RGB565 (or GRAYSCALE) sensor.set_framesize(sensor.QVGA) # Set frame size to QVGA (320x240) sensor.set_windowing((240, 240)) # Set 240x240 window. sensor.skip_frames(time=2000) # Let the camera adjust. net = None labels = None min_confidence = 0.5 try: # load the model, alloc the model file on the heap if we have at least 64K free after loading net = ml.Model("trained.tflite", load_to_fb=uos.stat('trained.tflite')[6] > (gc.mem_free() - (64*1024))) except Exception as e: raise Exception('Failed to load "trained.tflite", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')') try: labels = [line.rstrip('\n') for line in open("labels.txt")] except Exception as e: raise Exception('Failed to load "labels.txt", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')') colors = [ # Add more colors if you are detecting more than 7 types of classes at once. (255, 0, 0), ( 0, 255, 0), (255, 255, 0), ( 0, 0, 255), (255, 0, 255), ( 0, 255, 255), (255, 255, 255), ] threshold_list = [(math.ceil(min_confidence * 255), 255)] def fomo_post_process(model, inputs, outputs): ob, oh, ow, oc = model.output_shape[0] x_scale = inputs[0].roi[2] / ow y_scale = inputs[0].roi[3] / oh scale = min(x_scale, y_scale) x_offset = ((inputs[0].roi[2] - (ow * scale)) / 2) + inputs[0].roi[0] y_offset = ((inputs[0].roi[3] - (ow * scale)) / 2) + inputs[0].roi[1] l = [[] for i in range(oc)] for i in range(oc): img = image.Image(outputs[0][0, :, :, i] * 255) blobs = img.find_blobs( threshold_list, x_stride=1, y_stride=1, area_threshold=1, pixels_threshold=1 ) for b in blobs: rect = b.rect() x, y, w, h = rect score = ( img.get_statistics(thresholds=threshold_list, roi=rect).l_mean() / 255.0 ) x = int((x * scale) + x_offset) y = int((y * scale) + y_offset) w = int(w * scale) h = int(h * scale) l[i].append((x, y, w, h, score)) return l sensor.set_auto_gain(False) # 颜色跟踪必须关闭自动增益 sensor.set_auto_whitebal(False) # 颜色跟踪必须关闭白平衡 thresholds = [(20, 30, 100, 127, 100, 127)] # 绿色阈值范围[1,3](@ref)``` roi = (15, 15, 30, 30) # 需根据实际场景调整[3](@ref)``` clock = time.clock() while(True): clock.tick() img = sensor.snapshot() for i, detection_list in enumerate(net.predict([img], callback=fomo_post_process)): if i == 0: continue # background class if len(detection_list) == 0: continue # no detections for this class? print("********** %s **********" % labels[i]) for x, y, w, h, score in detection_list: center_x = math.floor(x + (w / 2)) center_y = math.floor(y + (h / 2)) print(f"x {center_x}\ty {center_y}\tscore {score}") img.draw_circle((center_x, center_y, 12), color=colors[i]) print(clock.fps(), "fps", end="\n\n") img.histeq(adaptive=True) blobs = img.find_blobs([thresholds], roi=roi, invert=False) if blobs: total_green_pixels = sum(blob.pixels() for blob in blobs) # 累加所有绿色色块的像素数[3](@ref)``` print(total_green_pixels/900)
请在这里粘贴代码