import numpy as np
import cv2
def find_marker(Img):
kernel_2 = np.ones((2,2),np.uint8)#2x2的卷积核
kernel_3 = np.ones((3,3),np.uint8)#3x3的卷积核
kernel_4 = np.ones((4,4),np.uint8)#4x4的卷积核
if Img is not None:#判断图片是否读入
HSV = cv2.cvtColor(Img, cv2.COLOR_BGR2HSV)#把BGR图像转换为HSV格式
'''
HSV模型中颜色的参数分别是:色调(H),饱和度(S),明度(V)
下面两个值是要识别的颜色范围
'''
Lower = np.array([0, 128, 46])#要识别红色颜色的下限
Upper = np.array([5, 255, 255])#要识别红色颜色的上限
#mask是把HSV图片中在颜色范围内的区域变成白色,其他区域变成黑色
mask = cv2.inRange(HSV, Lower, Upper)
#下面四行是用卷积进行滤波
erosion = cv2.erode(mask,kernel_4,iterations = 1)
erosion = cv2.erode(erosion,kernel_4,iterations = 1)
dilation = cv2.dilate(erosion,kernel_4,iterations = 1)
dilation = cv2.dilate(dilation,kernel_4,iterations = 1)
#target是把原图中的非目标颜色区域去掉剩下的图像
target = cv2.bitwise_and(Img, Img, mask=dilation)
#将滤波后的图像变成二值图像放在binary中
ret, binary = cv2.threshold(dilation,127,255,cv2.THRESH_BINARY)
#在binary中发现轮廓,轮廓按照面积从小到大排列
(_, cnts, _)= cv2.findContours(binary,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
if cnts==[]:
return 0
c= max(cnts, key = cv2.contourArea)
return cv2.minAreaRect(c)
def distance_to_camera(knownWidth, focalLength, perWidth):
return (knownWidth * focalLength) / perWidth
KNOWN_DISTANCE = 102
KNOWN_WIDTH = 19
KNOWN_HEIGHT = 8.27
image = cv2.imread("/home/pi/Pictures/distanceTest.jpeg")
marker = find_marker(image)
focalLength = (marker[1][0] * KNOWN_DISTANCE) / KNOWN_WIDTH
camera = cv2.VideoCapture(0)
while camera.isOpened():
(grabbed, frame) = camera.read()
marker = find_marker(frame)
if marker == 0:
cv2.imshow("captureR", frame)
cv2.destroyWindow("captureR")
continue
inches = distance_to_camera(KNOWN_WIDTH, focalLength, marker[1][0])
box = cv2.boxPoints(marker)
box = np.int0(box)
cv2.drawContours(frame, [box], -1, (0, 255, 0), 2)
cv2.putText(frame, "%.2fcm" % (inches),
(frame.shape[1] - 600, frame.shape[0] - 20), cv2.FONT_HERSHEY_SIMPLEX,
2.0, (0, 255, 0), 3)
cv2.imshow("capture", frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
camera.release()
cv2.destroyWindow("capture")
W
wha3 发布的帖子
-
在openmv ide中如何引用numpy库呢 是无法引用吗