串口拓展板一定要用openmv的数据线吗。我换了其他的数据线就检测不到端口
V
vg4p
@vg4p
0
声望
28
楼层
585
资料浏览
0
粉丝
0
关注
vg4p 发布的帖子
-
创建文件为什么这里总是报错,错误原因OSError: [Errno 17] EEXIST
''' >> author: SXF >> email: [email]songxf1024@163.com[/email] >> description: 用LBP特征进行人脸识别,可进行人脸注册、人脸检测与人脸识别 Pin7高电平一次,触发人脸注册;默认低电平 UART1(Pin1)输出调试信息 UART3(Pin4)输出识别结果,当识别成功后,返回“Find It”(可自定义修改),可连接IoT平台 注:需配备SD卡,最大3支持2G,将main.py等文件放至SD卡根目录后上电 ''' import sensor, time, image #调用传感器,时钟,图片的库 import os, time #调用Os库用于文件操作 import pyb from pyb import Pin red = pyb.LED(1) #传递参数“1”给 pyb.LED 控制红色的RGB LED灯段, “2”控制绿色的RGB LED灯段,“3”控制蓝色的RGB LED灯段,“4”控制两个红外灯。 green = pyb.LED(2) blue = pyb.LED(3) infrared = pyb.LED(4) usart1 = pyb.UART(1, 115200) #设置串口总线1和3的的输出管脚和波特率 usart3 = pyb.UART(3, 115200) REGISTER_MODE = 0 sensor.reset() sensor.set_contrast(1) #设置相机图像对比度。-3至+3 sensor.set_gainceiling(16) #相机图像增益上限(2, 4, 8, 16, 32, 64, 128) sensor.set_pixformat(sensor.GRAYSCALE) #灰度,每个像素8bit。 sensor.set_framesize(sensor.HQVGA) sensor.skip_frames(10) #跳过10张照片,在更改设置后,跳过一些帧,等待感光元件变稳定 Path_Backup = {'path':'', 'id':0} #设置字符数组 rootpath = "/orl_faces" #定义根路径 DIST_THRESHOLD = 15000 # 差异度阈值 dangerous="/orl_faces/dangerous" def debug(strings): #返回调试结果 print(strings) usart1.write(str(strings)+"\r\n") def find(face_cascade, img): objects = img.find_features(face_cascade, threshold=0.75, scale_factor=1.25) # 人脸检测,搜索与Haar Cascade匹配的所有区域的图像,并返回一个关于这些特征的边界框矩形元组(x,y,w,h)的列表 if objects: green.on() time.sleep(500) green.off() width_old = 0 height_old = 0 index = 0 for r in objects: # 寻找最大的face if r[2] > width_old and r[3] > height_old: width_old = r[2] height_old = r[3] index += 1 index -= 1 #print("index:", index) img.draw_rectangle(objects[index]) d0 = img.find_lbp((0, 0, img.width(), img.height())) res = match(d0) if res != 0: debug(res) return 1 def match(d0): # 人脸识别 dir_lists = os.listdir(rootpath) # 路径下文件夹 dir_num = len(dir_lists) # 文件夹数量 debug("*" * 60) debug("Total %d Folders -> %s"%(dir_num, str(dir_lists))) for i in range(0, dir_num): item_lists = os.listdir(rootpath+'/'+dir_lists[i]) # 路径下文件 item_num = len(item_lists) # 文件数量 debug("The %d Folder[%s], Total %d Files -> %s" %(i+1, dir_lists[i], item_num, str(item_lists))) Path_Backup['path'] = rootpath+'/'+dir_lists[i] # 马上记录当前路径 Path_Backup['id'] = item_num # 马上记录当前文件数量 for j in range(0, item_num): # 文件依次对比 debug(">> Current File: " + item_lists[j]) try: img = image.Image("/orl_faces/%s/%s" % (dir_lists[i], item_lists[j]), copy_to_fb=True) except Exception as e: debug(e) break d1 = img.find_lbp((0, 0, img.width(), img.height())) # 提取特征值 dist = image.match_descriptor(d0, d1) # 计算差异度 debug(">> Difference Degree: " + str(dist)) if dist < DIST_THRESHOLD: #小于阈值 debug(">> ** Find It! **") green.on() time.sleep(1000) green.off() return item_lists[j] #找到之后返回文件夹编号 debug(">> ** No Match! **") return 0 def register(face_cascade, img): #拍摄人脸,mode为0时表示在非拍摄状态 global REGISTER_MODE if find(face_cascade, img) == 1: #find it debug(">> Existing without registration!") REGISTER_MODE = 0 return 0 #not find it dir_lists = os.listdir(rootpath) # 路径下文件夹 dir_num = len(dir_lists) # 文件夹数量 new_dir = ("%s/%d") % (rootpath, int(dir_num)+1) os.mkdir(new_dir) # 创建文件夹 cnt = 5 #拍摄5次图片 while cnt: #cnt>0 img = sensor.snapshot() #拍图片 objects = img.find_features(face_cascade, threshold=0.75, scale_factor=1.25) # 人脸检测 if objects: width_old = 0 height_old = 0 index = 0 for r in objects: # 寻找最大的face if r[2] > width_old and r[3] > height_old: width_old = r[2] height_old = r[3] index += 1 index -= 1 #print("index:", index) item_lists = os.listdir(new_dir) # 新路径下文件 item_num = len(item_lists) # 文件数量 img.save("%s/%d.pgm" % (new_dir, item_num)) # 写入文件 debug(">> [%d]Regist OK!" % cnt) img.draw_rectangle(objects[index]) green.on() time.sleep(50) green.off() cnt -= 1 if cnt==0: green.on() time.sleep(100) green.off() REGISTER_MODE = 0 def takephoto(res,face_cascade): if res==1: dg_dir = ("%s") % (dangerous) os.mkdir(dg_dir) # 创建文件夹 num=len(dg_dir) for i in range(0,8): red.on() #红灯亮表示一次的开始 print("About to start detecting faces...") sensor.skip_frames(time = 2000) # Give the user time to get ready.设置生效 red.off() #红灯灭,开始拍摄 print("Now detecting faces!") blue.on() #蓝灯亮 diff = 10 # We'll say we detected a face after 10 frames. while(diff): img = sensor.snapshot() # Threshold是介于0.0-1.0的阈值,较低值会同时提高检出率和假阳性 # 率。相反,较高值会同时降低检出率和假阳性率。 # scale是一个必须大于1.0的浮点数。较高的比例因子运行更快, # 但其图像匹配相应较差。理想值介于1.35-1.5之间。 faces = img.find_features(face_cascade, threshold=0.5, scale_factor=1.5) if faces: diff -= 1 for r in faces: img.draw_rectangle(r) blue.off() print("Face detected! Saving image%s"%(dg_dir)) sensor.snapshot().save("%s/%d.pgm" % (dg_dir,num))# Save Pic. num+=1 dir_num = len(dg_dir) if dir_num>80: os.remove(dg_dir) def main(): global REGISTER_MODE try: os.mkdir(rootpath) except: pass pin7 = Pin('P7', Pin.IN, Pin.PULL_DOWN) # 1为注册模式,即拍照存入,即高电平时进行拍摄 face_cascade = image.HaarCascade("frontalface", stages=25) #利用haar算子将forntalface模型导入,将一个内置的正脸Haar Cascade载入内存 #try: #face_cascade = image.HaarCascade("/haarcascade_frontalcatface.cascade", stages=25) # "frontalface" #except: #face_cascade = image.HaarCascade("frontalface", stages=25) print(face_cascade) clock = time.clock() img = None while (True): clock.tick() img = sensor.snapshot() if pin7.value() == 1: #高电平时设置mode为1进行录入拍摄模式,为低电平时执行else进行查找操作,并串口发出find it REGISTER_MODE = 1 if REGISTER_MODE == 1: debug("REGISTER_MODE\r\n") register(face_cascade, img) else: res = find(face_cascade, img) if res==1: takephoto(res,face_cascade) usart3.write("Find It\r\n") # 程序开始 #debug(os.listdir()) main()
-
为什么这个初始化错误,改了别的大小也不行
''' >> author: SXF >> email: [email]songxf1024@163.com[/email] >> description: 用LBP特征进行人脸识别,可进行人脸注册、人脸检测与人脸识别 Pin7高电平一次,触发人脸注册;默认低电平 UART1(Pin1)输出调试信息 UART3(Pin4)输出识别结果,当识别成功后,返回“Find It”(可自定义修改),可连接IoT平台 注:需配备SD卡,最大3支持2G,将main.py等文件放至SD卡根目录后上电 ''' import sensor, time, image #调用传感器,时钟,图片的库 import os, time #调用Os库用于文件操作 import pyb from pyb import Pin red = pyb.LED(1) #传递参数“1”给 pyb.LED 控制红色的RGB LED灯段, “2”控制绿色的RGB LED灯段,“3”控制蓝色的RGB LED灯段,“4”控制两个红外灯。 green = pyb.LED(2) blue = pyb.LED(3) infrared = pyb.LED(4) usart1 = pyb.UART(1, 115200) #设置串口总线1和3的的输出管脚和波特率 usart3 = pyb.UART(3, 115200) REGISTER_MODE = 0 sensor.reset() sensor.set_contrast(1) #设置相机图像对比度。-3至+3 sensor.set_gainceiling(16) #相机图像增益上限(2, 4, 8, 16, 32, 64, 128) sensor.set_framesize(sensor.HQVGA) #设置相机模块的帧大小 sensor.set_pixformat(sensor.GRAYSCALE) #灰度,每个像素8bit。 sensor.skip_frames(10) #跳过10张照片,在更改设置后,跳过一些帧,等待感光元件变稳定 Path_Backup = {'path':'', 'id':0} #设置字符数组 rootpath = "/orl_faces" #定义根路径 DIST_THRESHOLD = 15000 # 差异度阈值 def debug(strings): #返回调试结果 print(strings) usart1.write(str(strings)+"\r\n") def find(face_cascade, img): objects = img.find_features(face_cascade, threshold=0.75, scale_factor=1.25) # 人脸检测,搜索与Haar Cascade匹配的所有区域的图像,并返回一个关于这些特征的边界框矩形元组(x,y,w,h)的列表 if objects: green.on() time.sleep(500) green.off() width_old = 0 height_old = 0 index = 0 for r in objects: # 寻找最大的face if r[2] > width_old and r[3] > height_old: width_old = r[2] height_old = r[3] index += 1 index -= 1 #print("index:", index) img.draw_rectangle(objects[index]) d0 = img.find_lbp((0, 0, img.width(), img.height())) res = match(d0) if res != 0: debug(res) return 1 def match(d0): # 人脸识别 dir_lists = os.listdir(rootpath) # 路径下文件夹 dir_num = len(dir_lists) # 文件夹数量 debug("*" * 60) debug("Total %d Folders -> %s"%(dir_num, str(dir_lists))) for i in range(0, dir_num): item_lists = os.listdir(rootpath+'/'+dir_lists[i]) # 路径下文件 item_num = len(item_lists) # 文件数量 debug("The %d Folder[%s], Total %d Files -> %s" %(i+1, dir_lists[i], item_num, str(item_lists))) Path_Backup['path'] = rootpath+'/'+dir_lists[i] # 马上记录当前路径 Path_Backup['id'] = item_num # 马上记录当前文件数量 for j in range(0, item_num): # 文件依次对比 debug(">> Current File: " + item_lists[j]) try: img = image.Image("/orl_faces/%s/%s" % (dir_lists[i], item_lists[j]), copy_to_fb=True) except Exception as e: debug(e) break d1 = img.find_lbp((0, 0, img.width(), img.height())) # 提取特征值 dist = image.match_descriptor(d0, d1) # 计算差异度 debug(">> Difference Degree: " + str(dist)) if dist < DIST_THRESHOLD: #小于阈值 debug(">> ** Find It! **") green.on() time.sleep(1000) green.off() return item_lists[j] #找到之后返回文件夹编号 debug(">> ** No Match! **") return 0 def register(face_cascade, img): #拍摄人脸,mode为0时表示在非拍摄状态 global REGISTER_MODE if find(face_cascade, img) == 1: #find it debug(">> Existing without registration!") REGISTER_MODE = 0 return 0 #not find it dir_lists = os.listdir(rootpath) # 路径下文件夹 dir_num = len(dir_lists) # 文件夹数量 new_dir = ("%s/%d") % (rootpath, int(dir_num)+1) os.mkdir(new_dir) # 创建文件夹 cnt = 15 #拍摄10次图片 while cnt: #cnt>0 img = sensor.snapshot() #拍图片 objects = img.find_features(face_cascade, threshold=0.75, scale_factor=1.25) # 人脸检测 if objects: width_old = 0 height_old = 0 index = 0 for r in objects: # 寻找最大的face if r[2] > width_old and r[3] > height_old: width_old = r[2] height_old = r[3] index += 1 index -= 1 #print("index:", index) item_lists = os.listdir(new_dir) # 新路径下文件 item_num = len(item_lists) # 文件数量 img.save("%s/%d.pgm" % (new_dir, item_num)) # 写入文件 debug(">> [%d]Regist OK!" % cnt) img.draw_rectangle(objects[index]) green.on() time.sleep(50) green.off() cnt -= 1 if cnt==0: green.on() time.sleep(1000) green.off() REGISTER_MODE = 0 def takephoto(res): if res==1: dg_dir = ("%s/%s") % (rootpath, dangerous) os.mkdir(dg_dir) # 创建文件夹 num=len(dg_dir) for i in range(0,8): red.on() #红灯亮表示一次的开始 print("About to start detecting faces...") sensor.skip_frames(time = 2000) # Give the user time to get ready.设置生效 red.off() #红灯灭,开始拍摄 print("Now detecting faces!") blue.on() #蓝灯亮 diff = 10 # We'll say we detected a face after 10 frames. while(diff): img = sensor.snapshot() # Threshold是介于0.0-1.0的阈值,较低值会同时提高检出率和假阳性 # 率。相反,较高值会同时降低检出率和假阳性率。 # scale是一个必须大于1.0的浮点数。较高的比例因子运行更快, # 但其图像匹配相应较差。理想值介于1.35-1.5之间。 faces = img.find_features(face_cascade, threshold=0.5, scale_factor=1.5) if faces: diff -= 1 for r in faces: img.draw_rectangle(r) blue.off() print("Face detected! Saving image%s"%(dg_dir)) sensor.snapshot().save("%s/%d.pgm" % (dg_dir,num))# Save Pic. num+=1 dir_num = len(dg_dir) if dir_num>80: os.remove(dg_dir) def main(): global REGISTER_MODE try: os.mkdir(rootpath) except: pass pin7 = Pin('P7', Pin.IN, Pin.PULL_DOWN) # 1为注册模式,即拍照存入,即高电平时进行拍摄 face_cascade = image.HaarCascade("frontalface", stages=25) #利用haar算子将forntalface模型导入,将一个内置的正脸Haar Cascade载入内存 #try: #face_cascade = image.HaarCascade("/haarcascade_frontalcatface.cascade", stages=25) # "frontalface" #except: #face_cascade = image.HaarCascade("frontalface", stages=25) print(face_cascade) clock = time.clock() img = None while (True): clock.tick() img = sensor.snapshot() if pin7.value() == 1: #高电平时设置mode为1进行录入拍摄模式,为低电平时执行else进行查找操作,并串口发出find it REGISTER_MODE = 1 if REGISTER_MODE == 1: debug("REGISTER_MODE\r\n") register(face_cascade, img) else: res = find(face_cascade, img) if res==1: takephoto(res) usart3.write("Find It\r\n") # 程序开始 #debug(os.listdir()) main()