这是我原来的程序,IDE的版本是 IDE 4.0.14,只使用LCD的部分时程序可以正常运行
THRESHOLD = (0, 34, -16, 4, -1, 15) # Grayscale threshold for dark things...
import sensor, image, time
from pyb import LED
import car
from pid import PID
rho_pid = PID(p=0.5, i=0,d=0.015)
theta_pid = PID(p=0.001, i=0,d=0.01)
circle=0
LED(1).on()
LED(2).on()
LED(3).on()
from machine import SPI, Pin
from display import SPIDisplay
lcd=display.SPIDisplay()
sensor.reset()
sensor.set_vflip(False)
sensor.set_hmirror(False)
sensor.set_pixformat(sensor.RGB565)
sensor.set_framesize(sensor.QQQVGA) # 80x60 (4,800 pixels) - O(N^2) max = 2,3040,000.
#sensor.set_windowing([0,20,80,40])
sensor.skip_frames(time = 2000) # WARNING: If you use QQVGA it may take seconds
clock = time.clock() # to process a frame sometimes.
last_increase_time = time.time()-10
while True:
clock.tick()
img = sensor.snapshot().binary([THRESHOLD])
for blob in img.find_blobs([THRESHOLD], roi=[0,0,80,60], x_stride=2, y_stride=2, invert=True, pixels_threshold=1000, merge=True):
img.draw_rectangle(blob.rect())
img.draw_cross(blob.cx(), blob.cy())
current_time = time.time()
if (current_time - last_increase_time >= 10):
circle += 1
last_increase_time = current_time
if circle % 2 != 0:
start_time = time.time()
while True:
current_time = time.time()
elapsed_time = current_time - start_time
car.run(30, 30)
if elapsed_time >= 0.1:
break
start_time = time.time()
while True:
current_time = time.time()
elapsed_time = current_time - start_time
car.run(28 , 31 )
if elapsed_time >= 0.2:
break
else:
start_time = time.time()
while True:
current_time = time.time()
elapsed_time = current_time - start_time
car.run(30, 30)
if elapsed_time >= 0.4:
break
# time.sleep(0.1)
line = img.get_regression([(100, 100)], robust=True)
if (line):
rho_err = abs(line.rho())-img.width()/2
if line.theta()>90:
theta_err = line.theta()-180
else:
theta_err = line.theta()
img.draw_line(line.line(), color = 127)
print(rho_err,line.magnitude(),rho_err)
if line.magnitude()>8:
#if -40<b_err<40 and -30<t_err<30:
rho_output = rho_pid.get_pid(rho_err,1)
theta_output = theta_pid.get_pid(theta_err,1)
output = rho_output+theta_output
car.run(30+output, 30-output)
else:
car.run(0,0)
else:
car.run(30,-30)
pass
#print(clock.fps())
print(circle)
以下是我添加LCD后的程序:
THRESHOLD = (0, 34, -16, 4, -1, 15) # Grayscale threshold for dark things...
import sensor, image, time,display
from pyb import LED
import car
from pid import PID
rho_pid = PID(p=0.5, i=0,d=0.015)
theta_pid = PID(p=0.001, i=0,d=0.01)
circle=0
LED(1).on()
LED(2).on()
LED(3).on()
from machine import SPI, Pin
from display import SPIDisplay
lcd=display.SPIDisplay()
#lcd = display.SPIDisplay()
sensor.reset()
sensor.set_vflip(False)
sensor.set_hmirror(False)
sensor.set_pixformat(sensor.RGB565)
sensor.set_framesize(sensor.QQQVGA) # 80x60 (4,800 pixels) - O(N^2) max = 2,3040,000.
#sensor.set_windowing([0,20,80,40])
sensor.skip_frames(time = 2000) # WARNING: If you use QQVGA it may take seconds
clock = time.clock() # to process a frame sometimes.
last_increase_time = time.time()-10
while True:
clock.tick()
img = sensor.snapshot().binary([THRESHOLD])
#lcd.write(img)
for blob in img.find_blobs([THRESHOLD], roi=[0,0,80,60], x_stride=2, y_stride=2, invert=True, pixels_threshold=1000, merge=True):
img.draw_rectangle(blob.rect())
img.draw_cross(blob.cx(), blob.cy())
current_time = time.time()
if (current_time - last_increase_time >= 10):
circle += 1
last_increase_time = current_time
if circle % 2 != 0:
start_time = time.time()
while True:
current_time = time.time()
elapsed_time = current_time - start_time
car.run(30, 30)
if elapsed_time >= 0.1:
break
start_time = time.time()
while True:
current_time = time.time()
elapsed_time = current_time - start_time
car.run(28 , 31 )
if elapsed_time >= 0.2:
break
else:
start_time = time.time()
while True:
current_time = time.time()
elapsed_time = current_time - start_time
car.run(30, 30)
if elapsed_time >= 0.4:
break
# time.sleep(0.1)
line = img.get_regression([(100, 100)], robust=True)
if (line):
rho_err = abs(line.rho())-img.width()/2
if line.theta()>90:
theta_err = line.theta()-180
else:
theta_err = line.theta()
img.draw_line(line.line(), color = 127)
print(rho_err,line.magnitude(),rho_err)
if line.magnitude()>8:
#if -40<b_err<40 and -30<t_err<30:
rho_output = rho_pid.get_pid(rho_err,1)
theta_output = theta_pid.get_pid(theta_err,1)
output = rho_output+theta_output
car.run(30+output, 30-output)
else:
car.run(0,0)
else:
car.run(30,-30)
pass
#print(clock.fps())
print(circle)
car.py程序如下:
from pyb import Pin, Timer
inverse_left=False
inverse_right=False
ain1 = Pin('P0', Pin.OUT_PP)
ain2 = Pin('P1', Pin.OUT_PP)
bin1 = Pin('P2', Pin.OUT_PP)
bin2 = Pin('P3', Pin.OUT_PP)
ain1.low()
ain2.low()
bin1.low()
bin2.low()
pwma = Pin('P7')
pwmb = Pin('P8')
tim = Timer(4, freq=1000)
ch1 = tim.channel(1, Timer.PWM, pin=pwma)
ch2 = tim.channel(2, Timer.PWM, pin=pwmb)
ch1.pulse_width_percent(0)
ch2.pulse_width_percent(0)
def run(left_speed, right_speed):
if inverse_left==True:
left_speed=(-left_speed)
if inverse_right==True:
right_speed=(-right_speed)
if left_speed < 0:
ain1.low()
ain2.high()
else:
ain1.high()
ain2.low()
ch1.pulse_width_percent(int(abs(left_speed)))
if right_speed < 0:
bin1.low()
bin2.high()
else:
bin1.high()
bin2.low()
ch2.pulse_width_percent(int(abs(right_speed)))
pid.py的程序如下:
from pyb import millis
from math import pi, isnan
class PID:
_kp = _ki = _kd = _integrator = _imax = 0
_last_error = _last_derivative = _last_t = 0
_RC = 1/(2 * pi * 20)
def init(self, p=0, i=0, d=0, imax=0):
self._kp = float(p)
self._ki = float(i)
self._kd = float(d)
self._imax = abs(imax)
self._last_derivative = float('nan')
def get_pid(self, error, scaler):
tnow = millis()
dt = tnow - self._last_t
output = 0
if self._last_t == 0 or dt > 1000:
dt = 0
self.reset_I()
self._last_t = tnow
delta_time = float(dt) / float(1000)
output += error * self._kp
if abs(self._kd) > 0 and dt > 0:
if isnan(self._last_derivative):
derivative = 0
self._last_derivative = 0
else:
derivative = (error - self._last_error) / delta_time
derivative = self._last_derivative + \
((delta_time / (self._RC + delta_time)) * \
(derivative - self._last_derivative))
self._last_error = error
self._last_derivative = derivative
output += self._kd * derivative
output *= scaler
if abs(self._ki) > 0 and dt > 0:
self._integrator += (error * self._ki) * scaler * delta_time
if self._integrator < -self._imax: self._integrator = -self._imax
elif self._integrator > self._imax: self._integrator = self._imax
output += self._integrator
return output
def reset_I(self):
self._integrator = 0
self._last_derivative = float('nan')