导航

    • 登录
    • 搜索
    • 版块
    • 产品
    • 教程
    • 论坛
    • 淘宝
    1. 主页
    2. umcn
    U
    • 举报资料
    • 资料
    • 关注
    • 粉丝
    • 屏蔽
    • 帖子
    • 楼层
    • 最佳
    • 群组

    umcn

    @umcn

    0
    声望
    3
    楼层
    423
    资料浏览
    0
    粉丝
    0
    关注
    注册时间 最后登录

    umcn 关注

    umcn 发布的帖子

    • RE: 颜色形状识别_识别矩形后+find_blobs如何实现?

      好得,我现在就去试试,谢谢小姐姐

      发布在 OpenMV Cam
      U
      umcn
    • RE: 颜色形状识别_识别矩形后+find_blobs如何实现?

      import sensor, image, timeimport car from pid import PIDsensor.reset()sensor.set_pixformat(sensor.RGB565)sensor.set_framesize(sensor.QQVGA)sensor.skip_frames(10)sensor.set_auto_whitebal(False)clock = time.clock() red_threshold = (34, 67, 28, 85, -17, 73)green_threshold = (76, 96, -110, -30, 8, 66)size_threshold = 2000x_pid = PID(p=0.5, i=1, imax=100)h_pid = PID(p=0.05, i=0.1, imax=50)def find_max(blobs): max_size=0 for blob in blobs: if blob[2]*blob[3] > max_size: max_blob = blob max_size = blob[2]*blob[3] return max_blob

      while(True): clock.tick() # Track elapsed milliseconds between snapshots(). img = sensor.snapshot().lens_corr(1.8) # Take a picture and return the image. for r in img.find_rects(threshold = 10000): area = (r.x()-r.w()/2,r.y()-r.h()/2,r.h(),r.w()) blobs = img.find_blobs([red_threshold],roi=int(area)) if blobs: max_blob = find_max(blobs) x_error = max_blob[5]-img.width()/2 h_error = max_blob[2]*max_blob[3]-size_threshold print("x error: ", x_error) ''' for b in blobs: # Draw a rect around the blob. img.draw_rectangle(b[0:4]) # rect img.draw_cross(b[5], b[6]) # cx, cy ''' img.draw_rectangle(max_blob[0:4]) # rect img.draw_cross(max_blob[5], max_blob[6]) # cx, cy x_output=x_pid.get_pid(x_error,1) h_output=h_pid.get_pid(h_error,1) print("h_output",h_output) car.run(-h_output-x_output,-h_output+x_output) else: car.run(18,-18)

      发布在 OpenMV Cam
      U
      umcn
    • 颜色形状识别_识别矩形后+find_blobs如何实现?

      看完教程后,发现小姐姐提了三种方法实现颜色形状同时识别,但因为我是想要在追球小车上实现颜色形状同时识别,所以我想用第二种方法,自己尝试了一下,调了一下午都没成功,想问问有没有成功了的程序,官网上仅有识别形状+识别像素点的例程。以下是我没成功的代码(在小车代码的基础上修改)
      while(True): clock.tick() # Track elapsed milliseconds between snapshots(). img = sensor.snapshot().lens_corr(1.8) # Take a picture and return the image. for r in img.find_rects(threshold = 10000): area = (r.x()-r.w()/2,r.y()-r.h()/2,r.h(),r.w()) blobs = img.find_blobs([red_threshold],roi=int(area)) if blobs: max_blob = find_max(blobs) x_error = max_blob[5]-img.width()/2 h_error = max_blob[2]*max_blob[3]-size_threshold print("x error: ", x_error) ''' for b in blobs: # Draw a rect around the blob. img.draw_rectangle(b[0:4]) # rect img.draw_cross(b[5], b[6]) # cx, cy ''' img.draw_rectangle(max_blob[0:4]) # rect img.draw_cross(max_blob[5], max_blob[6]) # cx, cy x_output=x_pid.get_pid(x_error,1) h_output=h_pid.get_pid(h_error,1) print("h_output",h_output) car.run(-h_output-x_output,-h_output+x_output) else: car.run(18,-18)

      发布在 OpenMV Cam
      U
      umcn