导航

    • 登录
    • 搜索
    • 版块
    • 产品
    • 教程
    • 论坛
    • 淘宝
    1. 主页
    2. t3fm
    T
    • 举报资料
    • 资料
    • 关注
    • 粉丝
    • 屏蔽
    • 帖子
    • 楼层
    • 最佳
    • 群组

    t3fm

    @t3fm

    0
    声望
    1
    楼层
    41
    资料浏览
    0
    粉丝
    0
    关注
    注册时间 最后登录

    t3fm 关注

    t3fm 发布的帖子

    • 特征点检测例程这个报错怎么解决?(纯小白,请大佬指点)
      # This work is licensed under the MIT license.
      # Copyright (c) 2013-2023 OpenMV LLC. All rights reserved.
      # https://github.com/openmv/openmv/blob/master/LICENSE
      #
      # Object tracking with keypoints example.
      # Show the camera an object and then run the script. A set of keypoints will be extracted
      # once and then tracked in the following frames. If you want a new set of keypoints re-run
      # the script. NOTE: see the docs for arguments to tune find_keypoints and match_keypoints.
      import sensor
      import time
      import image
      
      # Reset sensor
      sensor.reset()
      
      # Sensor settings
      sensor.set_contrast(3)
      sensor.set_gainceiling(16)
      sensor.set_framesize(sensor.VGA)
      sensor.set_windowing((320, 240))
      sensor.set_pixformat(sensor.GRAYSCALE)
      
      sensor.skip_frames(time=2000)
      sensor.set_auto_gain(False, value=100)#报错在这,后面这个参数删去之后就可以使用但是和视频教程不一样![0_1745984129090_屏幕截图 2024-10-04 131103.png](https://fcdn.singtown.com/05c7cbbc-33e8-4ef5-9fb9-a1e394b6f05b.png) 
      
      
      def draw_keypoints(img, kpts):
          if kpts:
              print(kpts)
              img.draw_keypoints(kpts)
              img = sensor.snapshot()
              time.sleep_ms(1000)
      
      
      kpts1 = None
      # NOTE: uncomment to load a keypoints descriptor from file
      # kpts1 = image.load_descriptor("/desc.orb")
      # img = sensor.snapshot()
      # draw_keypoints(img, kpts1)
      
      clock = time.clock()
      while True:
          clock.tick()
          img = sensor.snapshot()
          if kpts1 is None:
              # NOTE: By default find_keypoints returns multi-scale keypoints extracted from an image pyramid.
              kpts1 = img.find_keypoints(max_keypoints=150, threshold=10, scale_factor=1.2)
              draw_keypoints(img, kpts1)
          else:
              # NOTE: When extracting keypoints to match the first descriptor, we use normalized=True to extract
              # keypoints from the first scale only, which will match one of the scales in the first descriptor.
              kpts2 = img.find_keypoints(max_keypoints=150, threshold=10, normalized=True)
              if kpts2:
                  match = image.match_descriptor(kpts1, kpts2, threshold=85)
                  if match.count() > 10:
                      # If we have at least n "good matches"
                      # Draw bounding rectangle and cross.
                      img.draw_rectangle(match.rect())
                      img.draw_cross(match.cx(), match.cy(), size=10)
      
                  print(kpts2, "matched:%d dt:%d" % (match.count(), match.theta()))
                  # NOTE: uncomment if you want to draw the keypoints
                  # img.draw_keypoints(kpts2, size=KEYPOINTS_SIZE, matched=True)
      
          # Draw FPS
          img.draw_string(0, 0, "FPS:%.2f" % (clock.fps()))
      
      

      0_1745984141906_ace85ec2-20a5-4cd8-8522-5c93d7fd784a-image.png

      发布在 OpenMV Cam
      T
      t3fm