导航

    • 登录
    • 搜索
    • 版块
    • 产品
    • 教程
    • 论坛
    • 淘宝
    1. 主页
    2. rvwk
    R
    • 举报资料
    • 资料
    • 关注
    • 粉丝
    • 屏蔽
    • 帖子
    • 楼层
    • 最佳
    • 群组

    rvwk

    @rvwk

    0
    声望
    14
    楼层
    867
    资料浏览
    0
    粉丝
    1
    关注
    注册时间 最后登录

    rvwk 关注

    rvwk 发布的帖子

    • 如何提高神经网络训练精度,训练15种物品,大大小小,颜色各一的物品。

      我们用了8种物品大小差距比较大,颜色也不宜。物品太小,摄像头识别不是很清楚,物品太大,摄像头看不全。如何提高识别精度。

      发布在 OpenMV Cam
      R
      rvwk
    • 垃圾分类,用的神经网络训练出来的代码,怎么跟舵机配合,使得识别到指定垃圾转动指定角度
      # Edge Impulse - OpenMV Image Classification Example
      
      import sensor, image, time, os, tf
      from pyb import Servo
      import time
      sensor.reset()                         # Reset and initialize the sensor.
      sensor.set_pixformat(sensor.RGB565)    # Set pixel format to RGB565 (or GRAYSCALE)
      sensor.set_framesize(sensor.QVGA)      # Set frame size to QVGA (320x240)
      sensor.set_windowing((240, 240))       # Set 240x240 window.
      sensor.skip_frames(time=2000)          # Let the camera adjust.
      s1 = Servo(1)
      s2 = Servo(2)
      net = "trained.tflite"
      labels = [line.rstrip('\n') for line in open("labels.txt")]
      n = 0
      clock = time.clock()
      while(True):
          clock.tick()
      
          img = sensor.snapshot()
      
          # default settings just do one detection... change them to search the image...
          for obj in tf.classify(net, img, min_scale=1.0, scale_mul=0.8, x_overlap=0.5, y_overlap=0.5):
              print("**********\nPredictions at [x=%d,y=%d,w=%d,h=%d]" % obj.rect())
              img.draw_rectangle(obj.rect())
              #我知道写控制舵机的语句在这些,我分了11个类,我想知道当openmv识别到指定垃圾时,程序根据哪个变量来知道识别
              #的是哪种垃圾,因为我需要根据识别到的垃圾类型,来控制舵机转到相应的角度
              # This combines the labels and confidence values into a list of tuples
              predictions_list = list(zip(labels, obj.output()))
      
              for i in range(len(predictions_list)):
                  print("%s = %f" % (predictions_list[i][0], predictions_list[i][1]))
      
          print(clock.fps(), "fps")
      
      
      发布在 OpenMV Cam
      R
      rvwk
    • OSError:IErno 2] ENOENT
      # Edge Impulse - OpenMV Image Classification Example
      
      import sensor, image, time, os, tf
      
      sensor.reset()                         # Reset and initialize the sensor.
      sensor.set_pixformat(sensor.RGB565)    # Set pixel format to RGB565 (or GRAYSCALE)
      sensor.set_framesize(sensor.QVGA)      # Set frame size to QVGA (320x240)
      sensor.set_windowing((240, 240))       # Set 240x240 window.
      sensor.skip_frames(time=2000)          # Let the camera adjust.
      
      net = "trained.tflite"
      labels = [line.rstrip('\n') for line in open("labels.txt")]
      
      clock = time.clock()
      while(True):
          clock.tick()
      
          img = sensor.snapshot()
      
          # default settings just do one detection... change them to search the image...
          for obj in tf.classify(net, img, min_scale=1.0, scale_mul=0.8, x_overlap=0.5, y_overlap=0.5):
              print("**********\nPredictions at [x=%d,y=%d,w=%d,h=%d]" % obj.rect())
              img.draw_rectangle(obj.rect())
              # This combines the labels and confidence values into a list of tuples
              predictions_list = list(zip(labels, obj.output()))
      
              for i in range(len(predictions_list)):
                  print("%s = %f" % (predictions_list[i][0], predictions_list[i][1]))
      
          print(clock.fps(), "fps")
      

      0_1621689711192_屏幕截图 2021-05-22 212129.jpg

      发布在 OpenMV Cam
      R
      rvwk
    • openmv4 H7plus烧录了openmv2的固件,现在电脑检测不到openmv的存在

      因为最新4.0.0的固件bug,我去烧了以往的固件版本,误烧了openmv2的挂件版本,导致现在电脑检测不到openmv的存在,同时也烧不进3.9.4的版本,烧3.9.4时一直卡在49%的进度,用的DFU模式烧录

      发布在 OpenMV Cam
      R
      rvwk