导航

    • 登录
    • 搜索
    • 版块
    • 产品
    • 教程
    • 论坛
    • 淘宝
    1. 主页
    2. rdco
    3. 楼层
    R
    • 举报资料
    • 资料
    • 关注
    • 粉丝
    • 屏蔽
    • 帖子
    • 楼层
    • 最佳
    • 群组

    rdco 发布的帖子

    • RE: openmv4H7无法运行人脸识别官方例程

      @kidswong999 0_1750772474084_mmexport1750772467139.png 还是一样

      发布在 OpenMV Cam
      R
      rdco
    • RE: openmv4H7无法运行人脸识别官方例程

      @kidswong999 就是v4.7.0固件版本,还是报同一个错误

      发布在 OpenMV Cam
      R
      rdco
    • RE: openmv4H7无法运行人脸识别官方例程

      已经是v4.7.0版本了

      发布在 OpenMV Cam
      R
      rdco
    • openmv4H7无法运行人脸识别官方例程

      import sensor
      import time
      import image

      Reset sensor

      sensor.reset()

      Sensor settings

      sensor.set_contrast(3)
      sensor.set_gainceiling(16)

      HQVGA and GRAYSCALE are the best for face tracking.

      sensor.set_framesize(sensor.HQVGA)
      sensor.set_pixformat(sensor.GRAYSCALE)

      Load Haar Cascade

      By default this will use all stages, lower satges is faster but less accurate.

      face_cascade = image.HaarCascade("/rom/haarcascade_frontalface.cascade", stages=25)
      print(face_cascade)

      FPS clock

      clock = time.clock()

      while True:
      clock.tick()

      # Capture snapshot
      img = sensor.snapshot()
      
      # Find objects.
      # Note: Lower scale factor scales-down the image more and detects smaller objects.
      # Higher threshold results in a higher detection rate, with more false positives.
      objects = img.find_features(face_cascade, threshold=0.75, scale_factor=1.25)
      
      # Draw objects
      for r in objects:
          img.draw_rectangle(r)
      
      # Print FPS.
      # Note: Actual FPS is higher, streaming the FB makes it slower.
      print(clock.fps())
      

      这一行
      face_cascade = image.HaarCascade("/rom/haarcascade_frontalface.cascade", stages=25)报错,OSError: [Errno 19] ENODEV。

      发布在 OpenMV Cam
      R
      rdco