这个是人脸追踪代码
import sensor, image, time
from pid import PID
from pyb import Servo
pan_servo=Servo(1)
tilt_servo=Servo(2)
red_threshold = (13, 49, 18, 61, 6, 47)
pan_pid = PID(p=0.07, i=0, imax=90) #脱机运行或者禁用图像传输,使用这个PID
tilt_pid = PID(p=0.05, i=0, imax=90) #脱机运行或者禁用图像传输,使用这个PID
#pan_pid = PID(p=0.1, i=0, imax=90)#在线调试使用这个PID
#tilt_pid = PID(p=0.1, i=0, imax=90)#在线调试使用这个PID
sensor.reset() # Initialize the camera sensor.
sensor.set_contrast(1)
sensor.set_gainceiling(16)
sensor.set_pixformat(sensor.GRAYSCALE) # use RGB565.
sensor.set_framesize(sensor.QQVGA) # use QQVGA for speed.
sensor.skip_frames(10) # Let new settings take affect.
sensor.set_auto_whitebal(False) # turn this off.
clock = time.clock() # Tracks FPS.
face_cascade = image.HaarCascade("frontalface", stages=25)
def find_max(blobs):
max_size=0
for blob in blobs:
if blob[2]*blob[3] > max_size:
max_blob=blob
max_size = blob[2]*blob[3]
return max_blob
while(True):
clock.tick() # Track elapsed milliseconds between snapshots().
img = sensor.snapshot() # Take a picture and return the image.
blobs = img.find_features(face_cascade, threshold=0.75, scale=1.35)
if blobs:
max_blob = find_max(blobs)
pan_error = max_blob[0]+max_blob[2]/2-img.width()/2
tilt_error = max_blob[1]+max_blob[3]/2-img.height()/2
print("pan_error: ", pan_error)
img.draw_rectangle(max_blob) # rect
img.draw_cross (int(max_blob[0]+max_blob[2]/2), int(max_blob[1]+max_blob[3]/2)) # cx, cy
pan_output=pan_pid.get_pid(pan_error,1)/2
tilt_output=tilt_pid.get_pid(tilt_error,1)
print("pan_output",pan_output)
pan_servo.angle(pan_servo.angle()+pan_output)
tilt_servo.angle(tilt_servo.angle()-tilt_output)
这个是人脸识别代码
import sensor, image, time
from pid import PID
from pyb import Servo
pan_servo=Servo(1)
tilt_servo=Servo(2)
red_threshold = (13, 49, 18, 61, 6, 47)
pan_pid = PID(p=0.07, i=0, imax=90) #脱机运行或者禁用图像传输,使用这个PID
tilt_pid = PID(p=0.05, i=0, imax=90) #脱机运行或者禁用图像传输,使用这个PID
#pan_pid = PID(p=0.1, i=0, imax=90)#在线调试使用这个PID
#tilt_pid = PID(p=0.1, i=0, imax=90)#在线调试使用这个PID
sensor.reset() # Initialize the camera sensor.
sensor.set_contrast(1)
sensor.set_gainceiling(16)
sensor.set_pixformat(sensor.GRAYSCALE) # use RGB565.
sensor.set_framesize(sensor.QQVGA) # use QQVGA for speed.
sensor.skip_frames(10) # Let new settings take affect.
sensor.skip_frames(time = 500)
sensor.set_auto_whitebal(False) # turn this off.
clock = time.clock() # Tracks FPS.
face_cascade = image.HaarCascade("frontalface", stages=25)
NUM_SUBJECT = 6
NUM_SUBJECT_IMGS = 10
imgs = sensor.snapshot()
d0 = imgs.find_lbp((0,0,imgs.width(),imgs.height()))
def min(pmin,a,s):
global num
if a<pmin:
pmin=a
num=s
return pmin
imgs = None
pmin = 999999
num=0
def find_max(blobs):
max_size=0
for blob in blobs:
if blob[2]*blob[3] > max_size:
max_blob=blob
max_size = blob[2]*blob[3]
return max_blob
while():
clock.tick() # Track elapsed milliseconds between snapshots().
img = sensor.snapshot() # Take a picture and return the image.
blobs = img.find_features(face_cascade, threshold=0.75, scale=1.35)
if blobs:
max_blob = find_max(blobs)
pan_error = max_blob[0]+max_blob[2]/2-img.width()/2
tilt_error = max_blob[1]+max_blob[3]/2-img.height()/2
print("pan_error: ", pan_error)
img.draw_rectangle(max_blob) # rect
img.draw_cross (int(max_blob[0]+max_blob[2]/2), int(max_blob[1]+max_blob[3]/2)) # cx, cy
pan_output=pan_pid.get_pid(pan_error,1)/2
tilt_output=tilt_pid.get_pid(tilt_error,1)
print("pan_output",pan_output)
pan_servo.angle(pan_servo.angle()+pan_output)
tilt_servo.angle(tilt_servo.angle()-tilt_output)
for s in range(2,NUM_SUBJECT+1):
dist = 0
for i in range(2,NUM_SUBJECT+1):
imgs = image.Image("singtown/s%d/%d.pmg"%(s,i))
d1 = imgs.find_lbp((0,0,imgs.width(),imgs.height()))
dist +=image.match_descriptor(d0,d1)
pmin = min(pmin.dist/NUM_SUBJECTS_IMGS,s)
if pmin<7000:
print("wellcome!")
else:
print("检测到陌生人")
else:
print("未检测到人脸")