导航

    • 登录
    • 搜索
    • 版块
    • 产品
    • 教程
    • 论坛
    • 淘宝
    1. 主页
    2. n6l1
    N
    • 举报资料
    • 资料
    • 关注
    • 粉丝
    • 屏蔽
    • 帖子
    • 楼层
    • 最佳
    • 群组

    n6l1

    @n6l1

    0
    声望
    5
    楼层
    206
    资料浏览
    0
    粉丝
    0
    关注
    注册时间 最后登录

    n6l1 关注

    n6l1 发布的帖子

    • 训练transfer learning为什么报错?

      Traceback (most recent call last):
      File "/home/train.py", line 356, in
      main_function()
      File "/home/train.py", line 267, in main_function
      train_dataset, validation_dataset, samples_dataset, X_train, X_test, Y_train, Y_test, has_samples, X_samples, Y_samples = ei_tensorflow.training.get_dataset_from_folder(
      File "/app/./resources/libraries/ei_tensorflow/training.py", line 238, in get_dataset_from_folder
      X_train, X_test, Y_train, Y_test, X_train_raw = split_and_shuffle_data(
      File "/app/./resources/libraries/ei_tensorflow/training.py", line 63, in split_and_shuffle_data
      Y_file = np_load_file_auto_mmap(os.path.join(dir_path, y_train_path))
      File "/app/./resources/libraries/ei_tensorflow/training.py", line 24, in np_load_file_auto_mmap
      return np.load(file)
      File "/app/keras/.venv/lib/python3.8/site-packages/numpy/lib/npyio.py", line 438, in load
      raise ValueError("Cannot load file containing pickled data "
      ValueError: Cannot load file containing pickled data when allow_pickle=False
      Application exited with code 1
      Job failed (see above)

      发布在 OpenMV Cam
      N
      n6l1
    • edge impluse中我想训练一个“transfer learning"的模型,但是系统提示报错?应该如何解决?

      edge impluse中我想训练一个“transfer learning"的模型,但是系统提示报错”Failed to start job: Your labeling method is set to "Bounding boxes (Object detection)", but you're trying to train a non-object detection model. Either change the labeling method (on Dashboard), or remove this learn block and add an 'Object detection' block under Create impulse.
      Job failed (see above)“应该怎么解决?

      发布在 OpenMV Cam
      N
      n6l1
    • RE: 训练神经网络,为什么运行结果只有帧率,没有概率?而且代码中的net为什么是none?

      ![0_1710590058526_da685cb0-8836-4314-8f42-56f749c05d63-image.png](正在上传 100%) 我想让运行结果为类似官方给的教程37里的运行结果“face=0.05,mask=0.94”应该怎么做

      发布在 OpenMV Cam
      N
      n6l1
    • 训练神经网络,为什么运行结果只有帧率,没有概率?而且代码中的net为什么是none?
      # Edge Impulse - OpenMV Object Detection Example
      
      import sensor, image, time, os, tf, math, uos, gc
      
      sensor.reset()                         # Reset and initialize the sensor.
      sensor.set_pixformat(sensor.RGB565)    # Set pixel format to RGB565 (or GRAYSCALE)
      sensor.set_framesize(sensor.QVGA)      # Set frame size to QVGA (320x240)
      sensor.set_windowing((240, 240))       # Set 240x240 window.
      sensor.skip_frames(time=2000)          # Let the camera adjust.
      
      net = None
      labels = None
      min_confidence = 0.5
      
      try:
          # load the model, alloc the model file on the heap if we have at least 64K free after loading
          net = tf.load("trained.tflite", load_to_fb=uos.stat('trained.tflite')[6] > (gc.mem_free() - (64*1024)))
      except Exception as e:
          raise Exception('Failed to load "trained.tflite", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')')
      
      try:
          labels = [line.rstrip('\n') for line in open("labels.txt")]
      except Exception as e:
          raise Exception('Failed to load "labels.txt", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')')
      
      colors = [ # Add more colors if you are detecting more than 7 types of classes at once.
          (255,   0,   0),
          (  0, 255,   0),
          (255, 255,   0),
          (  0,   0, 255),
          (255,   0, 255),
          (  0, 255, 255),
          (255, 255, 255),
      ]
      
      clock = time.clock()
      while(True):
          clock.tick()
      
          img = sensor.snapshot()
      
          # detect() returns all objects found in the image (splitted out per class already)
          # we skip class index 0, as that is the background, and then draw circles of the center
          # of our objects
      
          for i, detection_list in enumerate(net.detect(img, thresholds=[(math.ceil(min_confidence * 255), 255)])):
              if (i == 0): continue # background class
              if (len(detection_list) == 0): continue # no detections for this class?
      
              print("********** %s **********" % labels[i])
              for d in detection_list:
                  [x, y, w, h] = d.rect()
                  center_x = math.floor(x + (w / 2))
                  center_y = math.floor(y + (h / 2))
                  print('x %d\ty %d' % (center_x, center_y))
                  img.draw_circle((center_x, center_y, 12), color=colors[i], thickness=2)
      
          print(clock.fps(), "fps", end="\n\n")
      
      发布在 OpenMV Cam
      N
      n6l1
    • 请问怎么使用openmv实现掌纹识别呢?

      请问怎么使用openmv实现掌纹识别呢?官方有没有相关的教程?

      发布在 OpenMV Cam
      N
      n6l1