导航

    • 登录
    • 搜索
    • 版块
    • 产品
    • 教程
    • 论坛
    • 淘宝
    1. 主页
    2. lx43
    3. 楼层
    L
    • 举报资料
    • 资料
    • 关注
    • 粉丝
    • 屏蔽
    • 帖子
    • 楼层
    • 最佳
    • 群组

    lx43 发布的帖子

    • 为什么我在edge impluse上训练的数字识别模型准确率有92%,但是用在openmv的准确率非常低呢?
      import sensor, time, ml, uos, gc
      
      sensor.reset()                         # Reset and initialize the sensor.
      sensor.set_pixformat(sensor.RGB565)    # Set pixel format to RGB565 (or GRAYSCALE)
      sensor.set_framesize(sensor.QVGA)      # Set frame size to QVGA (320x240)
      sensor.set_windowing((240, 240))       # Set 240x240 window.
      sensor.skip_frames(time=2000)          # Let the camera adjust.
      
      net = None
      labels = None
      
      try:
          # load the model, alloc the model file on the heap if we have at least 64K free after loading
          net = ml.Model("trained.tflite", load_to_fb=uos.stat('trained.tflite')[6] > (gc.mem_free() - (64*1024)))
      except Exception as e:
          print(e)
          raise Exception('Failed to load "trained.tflite", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')')
      
      try:
          labels = [line.rstrip('\n') for line in open("labels.txt")]
      except Exception as e:
          raise Exception('Failed to load "labels.txt", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')')
      
      clock = time.clock()
      while(True):
          clock.tick()
      
          img = sensor.snapshot()
      
          predictions_list = list(zip(labels, net.predict([img])[0].flatten().tolist()))
      
          for i in range(len(predictions_list)):
              print("%s = %f" % (predictions_list[i][0], predictions_list[i][1]))
          #time.sleep(1)
          print(clock.fps(), "fps")
      这是edge impluse生成的代码
      

      2_1746068421519_00007.jpg 1_1746068421519_00006.jpg 0_1746068421518_00005.jpg
      数据集大概是这样子的,每个数字都拍了100多张。
      1_1746068708813_8f78356c-0024-4e67-9000-22922a437dfc.png 0_1746068708813_0ca2fc99-530d-4520-881e-ff3fd2a26359.png
      edge impluse上训练的结果
      1_1746068742233_bee1c2d4-2209-4e33-8600-1570ef75c4df.png 0_1746068742233_a94ac2f6-2b79-4e4e-a076-4c8626742dd8.png
      这是openmv上识别的准确率

      发布在 OpenMV Cam
      L
      lx43