导航

    • 登录
    • 搜索
    • 版块
    • 产品
    • 教程
    • 论坛
    • 淘宝
    1. 主页
    2. lnah
    L
    • 举报资料
    • 资料
    • 关注
    • 粉丝
    • 屏蔽
    • 帖子
    • 楼层
    • 最佳
    • 群组

    lnah

    @lnah

    0
    声望
    1
    楼层
    241
    资料浏览
    0
    粉丝
    0
    关注
    注册时间 最后登录

    lnah 关注

    lnah 发布的帖子

    • 总是第一个for循环报错,我运行的时候总会提示快速帧缓冲堆内存不足,降低图像分辨率调整算法来绕过这个问题?
      # Edge Impulse - OpenMV Image Classification Example
      
      import sensor, image, time, os, tf
      
      sensor.reset()                         # Reset and initialize the sensor.
      sensor.set_pixformat(sensor.RGB565)    # Set pixel format to RGB565 (or GRAYSCALE)
      sensor.set_framesize(sensor.QVGA)      # Set frame size to QVGA (320x240)
      sensor.set_windowing((240, 240))       # Set 240x240 window.
      sensor.skip_frames(time=2000)          # Let the camera adjust.
      
      net = "trained.tflite"
      labels = [line.rstrip('\n') for line in open("labels.txt")]
      
      clock = time.clock()
      while(True):
          clock.tick()
      
          img = sensor.snapshot()
      
          # default settings just do one detection... change them to search the image...
         for obj in tf.classify(net, img, min_scale=1.0, scale_mul=0.8, x_overlap=0.5, y_overlap=0.5):
              print("**********\nPredictions at [x=%d,y=%d,w=%d,h=%d]" % obj.rect())
              img.draw_rectangle(obj.rect())
              # This combines the labels and confidence values into a list of tuples
              predictions_list = list(zip(labels, obj.output()))
      
              for i in range(len(predictions_list)):
                  print("%s = %f" % (predictions_list[i][0], predictions_list[i][1]))
      
          print(clock.fps(), "fps")
      ![0_1628934731145_IMG_20210814_173652.jpg](正在上传 85%) 
      

      ![0_1628934761673_IMG_20210814_173652.jpg](正在上传 73%) ![0_1628934773831_IMG_20210814_173652.jpg](正在上传 99%)

      发布在 OpenMV Cam
      L
      lnah