导航

    • 登录
    • 搜索
    • 版块
    • 产品
    • 教程
    • 论坛
    • 淘宝
    1. 主页
    2. lc63
    L
    • 举报资料
    • 资料
    • 关注
    • 粉丝
    • 屏蔽
    • 帖子
    • 楼层
    • 最佳
    • 群组

    lc63

    @lc63

    0
    声望
    1
    楼层
    307
    资料浏览
    0
    粉丝
    0
    关注
    注册时间 最后登录

    lc63 关注

    lc63 发布的帖子

    • MemoryError: Out of fast Frame Buffer Stack Memory!

      Edge Impulse - OpenMV Image Classification Example

      import sensor, image, time, os, tf

      sensor.reset() # Reset and initialize the sensor.
      sensor.set_pixformat(sensor.RGB565) # Set pixel format to RGB565 (or GRAYSCALE)
      sensor.set_framesize(sensor.QVGA) # Set frame size to QVGA (320x240)
      #sensor.set_windowing((240, 240)) # Set 240x240 window.
      sensor.skip_frames(time=2000) # Let the camera adjust.

      net = "trained.tflite"
      labels = [line.rstrip('\n') for line in open("labels.txt")]

      clock = time.clock()
      while(True):
      clock.tick()

      img = sensor.snapshot()
      
      # default settings just do one detection... change them to search the image...
      for obj in tf.classify(net, img, min_scale=1.0, scale_mul=0.8, x_overlap=0.5, y_overlap=0.5):
          print("**********\nPredictions at [x=%d,y=%d,w=%d,h=%d]" % obj.rect())
          img.draw_rectangle(obj.rect())
          # This combines the labels and confidence values into a list of tuples
          predictions_list = list(zip(labels, obj.output()))
      
          for i in range(len(predictions_list)):
              print("%s = %f" % (predictions_list[i][0], predictions_list[i][1]))
      
      print(clock.fps(), "fps")
      发布在 OpenMV Cam
      L
      lc63