导航

    • 登录
    • 搜索
    • 版块
    • 产品
    • 教程
    • 论坛
    • 淘宝
    1. 主页
    2. kb5r
    K
    • 举报资料
    • 资料
    • 关注
    • 粉丝
    • 屏蔽
    • 帖子
    • 楼层
    • 最佳
    • 群组

    kb5r

    @kb5r

    0
    声望
    1
    楼层
    286
    资料浏览
    0
    粉丝
    0
    关注
    注册时间 最后登录

    kb5r 关注

    kb5r 发布的帖子

    • Ncc模块匹配,示例中的代码
      # Template Matching Example - Normalized Cross Correlation (NCC)## This example shows off how to use the NCC feature of your OpenMV Cam to match# image patches to parts of an image... expect for extremely controlled enviorments# NCC is not all to useful.## WARNING: NCC supports needs to be reworked! As of right now this feature needs# a lot of work to be made into somethin useful. This script will reamin to show# that the functionality exists, but, in its current state is inadequate.import time, sensor, imagefrom image import SEARCH_EX, SEARCH_DS# Reset sensorsensor.reset()# Set sensor settingssensor.set_contrast(1)sensor.set_gainceiling(16)# Max resolution for template matching with SEARCH_EX is QQVGAsensor.set_framesize(sensor.QQVGA)# You can set windowing to reduce the search image.#sensor.set_windowing(((640-80)//2, (480-60)//2, 80, 60))sensor.set_pixformat(sensor.GRAYSCALE)# Load template.# Template should be a small (eg. 32x32 pixels) grayscale image.template = image.Image("/2.pgm")clock = time.clock()# Run template matchingwhile (True):    clock.tick()    img = sensor.snapshot()    # find_template(template, threshold, [roi, step, search])    # ROI: The region of interest tuple (x, y, w, h).    # Step: The loop step used (y+=step, x+=step) use a bigger step to make it faster.    # Search is either image.SEARCH_EX for exhaustive search or image.SEARCH_DS for diamond search    #    # Note1: ROI has to be smaller than the image and bigger than the template.    # Note2: In diamond search, step and ROI are both ignored.    r = img.find_template(template, 0.7, step=4, search=SEARCH_EX) #, roi=(10, 0, 60, 60))    if r:        img.draw_rectangle(r)    print(clock.fps())
      

      0_162346425ng

      发布在 OpenMV Cam
      K
      kb5r