# Edge Impulse - OpenMV Image Classification Example
import sensor, image, time, os, tf, pyb
sensor.reset() # Reset and initialize the sensor.
sensor.set_pixformat(sensor.RGB565) # Set pixel format to RGB565 (or GRAYSCALE)
sensor.set_framesize(sensor.QVGA) # Set frame size to QVGA (320x240)
sensor.set_windowing((240, 240)) # Set 240x240 window.
sensor.skip_frames(time=2000) # Let the camera adjust.
net = "trained.tflite"
labels = [line.rstrip('\n') for line in open("labels.txt")]
clock = time.clock()
while(True):
clock.tick()
img = sensor.snapshot()
for i in range(10):
x = (pyb.rng() % (2*img.width())) - (img.width()//2)
y = (pyb.rng() % (2*img.height())) - (img.height()//2)
w = (pyb.rng() % (img.width()//2))
h = (pyb.rng() % (img.height()//2))
r = (pyb.rng() % 127) + 128
g = (pyb.rng() % 127) + 128
b = (pyb.rng() % 127) + 128
img.draw_rectangle(x, y, w, h, color = (r, g, b), thickness = 2, fill = False)
# default settings just do one detection... change them to search the image...
for obj in tf.classify(net, img, min_scale=1.0, scale_mul=0.8, x_overlap=0.5, y_overlap=0.5):
print("**********\nPredictions at [x=%d,y=%d,w=%d,h=%d]" % obj.rect())
img.draw_rectangle(obj.rect())
# This combines the labels and confidence values into a list of tuples
predictions_list = list(zip(labels, obj.output()))
for i in range(len(predictions_list)):
print("%s = %f" % (predictions_list[i][0], predictions_list[i][1]))
print(clock.fps(), "fps")
#目标判断及框取
# img.draw_rectangle(blob.rect())#如果识别到颜色就框起来
#img.draw_cross(blob.cx(), blob.cy())#draw_cross:在中心画十字架;blob.cx(), blob.cy:色块中心坐标+