Predictions at [x=0,y=0,w=240,h=240]
number1 = 0.000000
number2 = 1.000000
number3 = 0.000000
number4 = 0.003922
4.78261 fps
这个是单独对2构建的神经网络,,但输出终端还有对1,3,4的识别
G
gkgr 发布的帖子
-
RE: 为何对数字1单独进行训练识别,串口终端还显示对数字2,3,4的识别呢?
-
RE: 为何对数字1单独进行训练识别,串口终端还显示对数字2,3,4的识别呢?
Edge Impulse - OpenMV Image Classification Example
import sensor, image, time, os, tf
sensor.reset() # Reset and initialize the sensor.
sensor.set_pixformat(sensor.GRAYSCALE) # Set pixel format to RGB565 (or GRAYSCALE)
sensor.set_framesize(sensor.QVGA) # Set frame size to QVGA (320x240)
sensor.set_windowing((240, 240)) # Set 240x240 window.
sensor.skip_frames(time=2000) # Let the camera adjust.net = "trained.tflite"
labels = [line.rstrip('\n') for line in open("labels.txt")]clock = time.clock()
while(True):
clock.tick()img = sensor.snapshot() # default settings just do one detection... change them to search the image... for obj in tf.classify(net, img, min_scale=1.0, scale_mul=0.5, x_overlap=0.5, y_overlap=0.5): print("**********\nPredictions at [x=%d,y=%d,w=%d,h=%d]" % obj.rect()) img.draw_rectangle(obj.rect()) # This combines the labels and confidence values into a list of tuples predictions_list = list(zip(labels, obj.output())) for i in range(len(predictions_list)): print("%s = %f" % (predictions_list[i][0], predictions_list[i][1])) print(clock.fps(), "fps")