导航

    • 登录
    • 搜索
    • 版块
    • 产品
    • 教程
    • 论坛
    • 淘宝
    1. 主页
    2. gkb4
    G
    • 举报资料
    • 资料
    • 关注
    • 粉丝
    • 屏蔽
    • 帖子
    • 楼层
    • 最佳
    • 群组

    gkb4

    @gkb4

    0
    声望
    2
    楼层
    341
    资料浏览
    0
    粉丝
    0
    关注
    注册时间 最后登录

    gkb4 关注

    gkb4 发布的帖子

    • 关于openmv H743 RAM大小的问题

      在edge impulse中训练好后,用来识别数字,但是提示错误,用的是灰度图GRAYSCALE和QVGA
      MemoryError: Out of fast Frame Buffer Stack Memory!Please reduce the resolution of the image you are running this algorithm on to bypass this isse!

      代码如下:

      Edge Impulse - OpenMV Image Classification Example

      import sensor, image, time, os, tf

      sensor.reset() # Reset and initialize the sensor.
      sensor.set_pixformat(sensor.GRAYSCALE) # Set pixel format to RGB565 (or GRAYSCALE)
      sensor.set_framesize(sensor.QVGA) # Set frame size to QVGA (320x240)
      sensor.set_windowing((240, 240)) # Set 240x240 window.
      sensor.skip_frames(time=2000) # Let the camera adjust.

      net = "trained.tflite"
      labels = [line.rstrip('\n') for line in open("labels.txt")]

      clock = time.clock()
      while(True):
      clock.tick()

      img = sensor.snapshot()
      
      # default settings just do one detection... change them to search the image...
      for obj in tf.classify(net, img, min_scale=0.5, scale_mul=0.5, x_overlap=0.1, y_overlap=0.1):
          print("**********\nPredictions at [x=%d,y=%d,w=%d,h=%d]" % obj.rect())
          img.draw_rectangle(obj.rect())
          # This combines the labels and confidence values into a list of tuples
          predictions_list = list(zip(labels, obj.output()))
      
          for i in range(len(predictions_list)):
              print("%s = %f" % (predictions_list[i][0], predictions_list[i][1]))
      
      print(clock.fps(), "fps")
      

      openmv4 plus可以解决吗

      发布在 OpenMV Cam
      G
      gkb4
    • OpenMv串口通信到小车上,控制小车

      利用OpenMv识别数字将信息串口通信到小车上,控制小车行驶路线可以实现吗

      发布在 OpenMV Cam
      G
      gkb4