导航

    • 登录
    • 搜索
    • 版块
    • 产品
    • 教程
    • 论坛
    • 淘宝
    1. 主页
    2. fgqg
    3. 楼层
    F
    • 举报资料
    • 资料
    • 关注
    • 粉丝
    • 屏蔽
    • 帖子
    • 楼层
    • 最佳
    • 群组

    fgqg 发布的帖子

    • RE: 为什么我的openmv(cam M4-OV7725)载入机器学习网络文件的时候,内存报分配错误?

      @kidswong999 我去试了一下,tf的库都不行,然后我准备用network神经网络的,但是IDE却提示ImportError: no module named 'nn',没有nn的库,这是什么情况?

      发布在 OpenMV Cam
      F
      fgqg
    • 为什么我的openmv(cam M4-OV7725)载入机器学习网络文件的时候,内存报分配错误?
      # TensorFlow Lite Person Dection Example
      #
      # Google's Person Detection Model detects if a person is in view.
      #
      # In this example we slide the detector window over the image and get a list
      # of activations. Note that use a CNN with a sliding window is extremely compute
      # expensive so for an exhaustive search do not expect the CNN to be real-time.
      
      import sensor, image, time, os, tf
      
      sensor.reset()                         # Reset and initialize the sensor.
      sensor.set_pixformat(sensor.GRAYSCALE) # Set pixel format to RGB565 (or GRAYSCALE)
      sensor.set_framesize(sensor.QVGA)      # Set frame size to QVGA (320x240)
      sensor.set_windowing((240, 240))       # Set 240x240 window.
      sensor.skip_frames(time=2000)          # Let the camera adjust.
      
      # Load the built-in person detection network (the network is in your OpenMV Cam's firmware).
      net = tf.load('./mobilenet_small_quant.tflite')
      labels = ["Angry", "Disgust", "Fear", "Happy", "Sad", "Surprise", "Neutral"]
      
      clock = time.clock()
      while(True):
          clock.tick()
      
          img = sensor.snapshot()
      
          # net.classify() will run the network on an roi in the image (or on the whole image if the roi is not
          # specified). A classification score output vector will be generated for each location. At each scale the
          # detection window is moved around in the ROI using x_overlap (0-1) and y_overlap (0-1) as a guide.
          # If you set the overlap to 0.5 then each detection window will overlap the previous one by 50%. Note
          # the computational work load goes WAY up the more overlap. Finally, for multi-scale matching after
          # sliding the network around in the x/y dimensions the detection window will shrink by scale_mul (0-1)
          # down to min_scale (0-1). For example, if scale_mul is 0.5 the detection window will shrink by 50%.
          # Note that at a lower scale there's even more area to search if x_overlap and y_overlap are small...
      
          # default settings just do one detection... change them to search the image...
          for obj in net.classify(img, min_scale=1.0, scale_mul=0.5, x_overlap=0.0, y_overlap=0.0):
              print("**********\nDetections at [x=%d,y=%d,w=%d,h=%d]" % obj.rect())
              for i in range(len(obj.output())):
                  print("%s = %f" % (labels[i], obj.output()[i]))
              img.draw_rectangle(obj.rect())
              img.draw_string(obj.x()+3, obj.y()-1, labels[obj.output().index(max(obj.output()))], mono_space = False)
          print(clock.fps(), "fps")
      
      

      报错信息:MemoryError: memory allocation failed, allocating 156856 bytes MicroPython: v1.15-r57 OpenMV: v4.1.1 HAL: v1.2.8 BOARD: OPENMV3-STM32F765

      发布在 OpenMV Cam
      F
      fgqg