导航

    • 登录
    • 搜索
    • 版块
    • 产品
    • 教程
    • 论坛
    • 淘宝
    1. 主页
    2. fcrp
    F
    • 举报资料
    • 资料
    • 关注
    • 粉丝
    • 屏蔽
    • 帖子
    • 楼层
    • 最佳
    • 群组

    fcrp

    @fcrp

    0
    声望
    2
    楼层
    591
    资料浏览
    0
    粉丝
    0
    关注
    注册时间 最后登录

    fcrp 关注

    fcrp 发布的帖子

    • 人脸追踪的用的最近的硬件,是不是因为网上的代码是以前硬件用的,不兼容。
      import sensor, image, time
      
      from pid import PID
      from pyb import Servo
      
      pan_servo=Servo(1)
      tilt_servo=Servo(2)
      
      pan_servo.calibration(500,2500,500)
      tilt_servo.calibration(500,2500,500)
      
      red_threshold  = (13, 49, 18, 61, 6, 47)
      
      pan_pid = PID(p=0.07, i=0, imax=90) #脱机运行或者禁用图像传输,使用这个PID
      tilt_pid = PID(p=0.05, i=0, imax=90) #脱机运行或者禁用图像传输,使用这个PID
      #pan_pid = PID(p=0.1, i=0, imax=90)#在线调试使用这个PID
      #tilt_pid = PID(p=0.1, i=0, imax=90)#在线调试使用这个PID
      
      sensor.reset() # Initialize the camera sensor.
      sensor.set_contrast(3)
      sensor.set_gainceiling(16)
      sensor.set_pixformat(sensor.GRAYSCALE) # use RGB565.
      sensor.set_framesize(sensor.QQVGA) # use QQVGA for speed.s
      sensor.skip_frames(10) # Let new settings take affect.
      sensor.set_auto_whitebal(False) # turn this off.
      clock = time.clock() # Tracks FPS.
      
      face_cascade = image.HaarCascade("frontalface", stages=25)
      
      def find_max(blobs):
          max_size=0
          for blob in blobs:
              if blob[2]*blob[3] > max_size:
                  max_blob=blob
                  max_size = blob[2]*blob[3]
          return max_blob
      
      
      while(True):
          clock.tick() # Track elapsed milliseconds between snapshots().
          img = sensor.snapshot() # Take a picture and return the image.
      
          blobs = img.find_features(face_cascade, threshold=0.75, scale=1.35)
          if blobs:
              max_blob = find_max(blobs)
              pan_error = max_blob[0]+max_blob[2]/2-img.width()/2
              tilt_error =max_blob[1]+max_blob[3]/2
      
              print("pan_error: ", pan_error)
      
              img.draw_rectangle(max_blob) # rect
              img.draw_cross(int(max_blob[0]+max_blob[2]/2), int(max_blob[1]+max_blob[3]/2)) # cx, cy
      
              pan_output=pan_pid.get_pid(pan_error,1)/2
              tilt_output=tilt_pid.get_pid(tilt_error,1)
              print("pan_output",pan_output)
              pan_servo.angle(pan_servo.angle()+pan_output)
              tilt_servo.angle(tilt_servo.angle()-tilt_output)
      
      发布在 OpenMV Cam
      F
      fcrp
    • 人脸追踪过程中识别很慢,舵机云台动两下就不动了,硬件没问题的,下面是main.py和pid.py是用来实现云台人脸追踪的
      import sensor, image, time
      
      from pid import PID
      from pyb import Servo
      
      pan_servo=Servo(1)
      tilt_servo=Servo(2)
      
      pan_servo.calibration(500,2500,500)
      tilt_servo.calibration(500,2500,500)
      
      red_threshold  = (13, 49, 18, 61, 6, 47)
      
      pan_pid = PID(p=0.07, i=0, imax=90) #脱机运行或者禁用图像传输,使用这个PID
      tilt_pid = PID(p=0.05, i=0, imax=90) #脱机运行或者禁用图像传输,使用这个PID
      #pan_pid = PID(p=0.1, i=0, imax=90)#在线调试使用这个PID
      #tilt_pid = PID(p=0.1, i=0, imax=90)#在线调试使用这个PID
      
      sensor.reset() # Initialize the camera sensor.
      sensor.set_contrast(3)
      sensor.set_gainceiling(16)
      sensor.set_pixformat(sensor.GRAYSCALE) # use RGB565.
      sensor.set_framesize(sensor.QQVGA) # use QQVGA for speed.s
      sensor.skip_frames(10) # Let new settings take affect.
      sensor.set_auto_whitebal(False) # turn this off.
      clock = time.clock() # Tracks FPS.
      
      face_cascade = image.HaarCascade("frontalface", stages=25)
      
      def find_max(blobs):
          max_size=0
          for blob in blobs:
              if blob[2]*blob[3] > max_size:
                  max_blob=blob
                  max_size = blob[2]*blob[3]
          return max_blob
      
      
      while(True):
          clock.tick() # Track elapsed milliseconds between snapshots().
          img = sensor.snapshot() # Take a picture and return the image.
      
          blobs = img.find_features(face_cascade, threshold=0.75, scale=1.35)
          if blobs:
              max_blob = find_max(blobs)
              pan_error = max_blob[0]+max_blob[2]/2-img.width()/2
              tilt_error =max_blob[1]+max_blob[3]/2
      
              print("pan_error: ", pan_error)
      
              img.draw_rectangle(max_blob) # rect
              img.draw_cross(int(max_blob[0]+max_blob[2]/2), int(max_blob[1]+max_blob[3]/2)) # cx, cy
      
              pan_output=pan_pid.get_pid(pan_error,1)/2
              tilt_output=tilt_pid.get_pid(tilt_error,1)
              print("pan_output",pan_output)
              pan_servo.angle(pan_servo.angle()+pan_output)
              tilt_servo.angle(tilt_servo.angle()-tilt_output)
      
      from pyb import millis
      from math import pi, isnan
       
      class PID:
          _kp = _ki = _kd = _integrator = _imax = 0
          _last_error = _last_derivative = _last_t = 0
          _RC = 1/(2 * pi * 20)
          def __init__(self, p=0, i=0, d=0, imax=0):
              self._kp = float(p)
              self._ki = float(i)
              self._kd = float(d)
              self._imax = abs(imax)
              self._last_derivative = float('nan')
       
          def get_pid(self, error, scaler):
              tnow = millis()
              dt = tnow - self._last_t
              output = 0
              if self._last_t == 0 or dt > 1000:
                  dt = 0
                  self.reset_I()
              self._last_t = tnow
              delta_time = float(dt) / float(1000)
              output += error * self._kp
              if abs(self._kd) > 0 and dt > 0:
                  if isnan(self._last_derivative):
                      derivative = 0
                      self._last_derivative = 0
                  else:
                      derivative = (error - self._last_error) / delta_time
                  derivative = self._last_derivative + \
                                           ((delta_time / (self._RC + delta_time)) * \
                                              (derivative - self._last_derivative))
                  self._last_error = error
                  self._last_derivative = derivative
                  output += self._kd * derivative
              output *= scaler
              if abs(self._ki) > 0 and dt > 0:
                  self._integrator += (error * self._ki) * scaler * delta_time
                  if self._integrator < -self._imax: self._integrator = -self._imax
                  elif self._integrator > self._imax: self._integrator = self._imax
                  output += self._integrator
              return output
          def reset_I(self):
              self._integrator = 0
              self._last_derivative = float('nan')
      
      发布在 OpenMV Cam
      F
      fcrp