E
egqm 发布的帖子
-
巡线例程运行不了的问题。
AttributeError: 'module' object has no attribute'set_ whitebal'
和
AttributeError: 'lmage' object has no attribute'find markers'
的问题
这一次的问题很简单。。就是巡线的例程,死活运行不了,我寻思我应该都声明了啊
另附,例程地址:http://kaizhi-xu.com/post/openmvli-cheng-jiang-jie/openmvli-cheng-jiang-jie-53# Line Following Example # # Making a line following robot requires a lot of effort. This example script # shows how to do the computer vision part of the line following robot. You # can use the output from this script to drive a differential drive robot to # follow a line. This script just generates a single turn value that tells # your robot to go left or right. # # For this script to work properly you should point the camera at a line at a # 45 or so degree angle. Please make sure that only the line is within the # camera's field of view. import sensor, image, time, math # Tracks a white line. Use [(0, 64)] for a tracking a black line. GRAYSCALE_THRESHOLD = [(0, 64)] #设置阈值,如果是黑线,GRAYSCALE_THRESHOLD = [(0, 64)];如果是白线,GRAYSCALE_THRESHOLD = [(128,255)] # Each roi is (x, y, w, h). The line detection algorithm will try to find the # centroid of the largest blob in each roi. The x position of the centroids # will then be averaged with different weights where the most weight is assigned # to the roi near the bottom of the image and less to the next roi and so on. ROIS = [ # [ROI, weight] (0, 100, 160, 20, 0.7), # You'll need to tweak the weights for you app (0, 050, 160, 20, 0.3), # depending on how your robot is setup. (0, 000, 160, 20, 0.1) ] #roi代表三个取样区域,(x,y,w,h,weight),代表左上顶点(x,y)宽高分别为w和h的矩形, #weight为当前矩形的权值。注意本例程采用的QQVGA图像大小为160x120,roi即把图像横分成三个矩形。 #三个矩形的阈值要根据实际情况进行调整,离机器人视野最近的矩形权值要最大, #如上图的最下方的矩形,即(0, 100, 160, 20, 0.7) # Compute the weight divisor weight_sum = 0 #权值和初始化 for r in ROIS: weight_sum += r[4] #计算权值和。遍历上面的三个矩形,r[4]即每个矩形的权值。 # Camera setup... sensor.reset() # Initialize the camera sensor. sensor.set_pixformat(sensor.GRAYSCALE) # use grayscale. sensor.set_framesize(sensor.QQVGA) # use QQVGA for speed. sensor.skip_frames(10) # Let new settings take affect. #sensor.set_whitebal(False) # turn this off. #关闭白平衡 clock = time.clock() # Tracks FPS. while(True): clock.tick() # Track elapsed milliseconds between snapshots(). img = sensor.snapshot() # Take a picture and return the image. centroid_sum = 0 #利用颜色识别分别寻找三个矩形区域内的线段 for r in ROIS: blobs = img.find_blobs(GRAYSCALE_THRESHOLD, roi=r[0:4]) # r[0:4] is roi tuple. #找到视野中的线 merged_blobs = img.find_markers(blobs) # merge overlapping blobs #将找到的图像区域合并成一个。 #目标区域找到直线 if merged_blobs: # Find the index of the blob with the most pixels. most_pixels = 0 largest_blob = 0 for i in range(len(merged_blobs)): #目标区域找到的颜色块(线段块)可能不止一个,找到最大的一个,作为本区域内的目标直线 if merged_blobs[i][4] > most_pixels: most_pixels = merged_blobs[i][4] # [4] is pixels. #merged_blobs[i][4]是这个颜色块的像素总数,如果此颜色块像素总数大于 #most_pixels,则把本区域作为像素总数最大的颜色块。更新most_pixels和largest_blob largest_blob = i # Draw a rect around the blob. #将此区域的像素数最大的颜色块画矩形和十字形标记出来 img.draw_rectangle(merged_blobs[largest_blob][0:4]) # rect img.draw_cross(merged_blobs[largest_blob][5], # cx merged_blobs[largest_blob][6]) # cy # [5] of the blob is the x centroid - r[4] is the weight. centroid_sum += merged_blobs[largest_blob][5] * r[4] #计算centroid_sum,centroid_sum等于每个区域的最大颜色块的中心点的x坐标值乘本区域的权值 center_pos = (centroid_sum / weight_sum) # Determine center of line. #中间公式 # Convert the center_pos to a deflection angle. We're using a non-linear # operation so that the response gets stronger the farther off the line we # are. Non-linear operations are good to use on the output of algorithms # like this to cause a response "trigger". deflection_angle = 0 #机器人应该转的角度. # The 80 is from half the X res, the 60 is from half the Y res. The # equation below is just computing the angle of a triangle where the # opposite side of the triangle is the deviation of the center position # from the center and the adjacent side is half the Y res. This limits # the angle output to around -45 to 45. (It's not quite -45 and 45). deflection_angle = -math.atan((center_pos-80)/60) #角度计算.80 60 分别为图像宽和高的一半,图像大小为QQVGA 160x120. #注意计算得到的是弧度值 # Convert angle in radians to degrees. deflection_angle = math.degrees(deflection_angle) #将计算结果的弧度值转化为角度值 # Now you have an angle telling you how much to turn the robot by which # incorporates the part of the line nearest to the robot and parts of # the line farther away from the robot for a better prediction. print("Turn Angle: %f" % deflection_angle) #将结果打印在terminal中 print(clock.fps()) # Note: Your OpenMV Cam runs about half as fast while # connected to your computer. The FPS should increase once disconnected.