把固件烧回4.0.1就可以了,亲试可行
C
cylm
@cylm
0
声望
5
楼层
438
资料浏览
0
粉丝
0
关注
cylm 发布的帖子
-
RE: Openmv4 Plus 神经网络口罩识别模型不准确
你好,我也遇到了相同的问题,请问你解决了吗?
我注意到在输出特征的时候很分散,所以我怀疑有可能是背景太乱的问题,但我还没有测试。 -
部署自己训练的神经网络模型后出现问题,带SD卡会自动断开连接,不带SD卡运行模型自带程序后也会断开连接。为什么?
# Edge Impulse - OpenMV Image Classification Example import sensor, image, time, os, tf sensor.reset() # Reset and initialize the sensor. sensor.set_pixformat(sensor.RGB565) # Set pixel format to RGB565 (or GRAYSCALE) sensor.set_framesize(sensor.QVGA) # Set frame size to QVGA (320x240) sensor.set_windowing((240, 240)) # Set 240x240 window. sensor.skip_frames(time=2000) # Let the camera adjust. net = "something.tflite" labels = [line.rstrip('\n') for line in open("labels.txt")] clock = time.clock() while(True): clock.tick() img = sensor.snapshot() # default settings just do one detection... change them to search the image... for obj in tf.classify(net, img, min_scale=1.0, scale_mul=0.8, x_overlap=0.5, y_overlap=0.5): print("**********\nPredictions at [x=%d,y=%d,w=%d,h=%d]" % obj.rect()) img.draw_rectangle(obj.rect()) # This combines the labels and confidence values into a list of tuples predictions_list = list(zip(labels, obj.output())) for i in range(len(predictions_list)): print("%s = %f" % (predictions_list[i][0], predictions_list[i][1])) print(clock.fps(), "fps")