openmv如何与飞控进行通讯,通过openmv识别颜色给飞控一个坐标点,飞控控制无人机飞行
B
btck 发布的帖子
-
openmv如何与飞控进行通讯,通过openmv识别颜色给飞控一个坐标点,飞控控制无人机飞行
-
如何在同时识别颜色和圆形时,获得坐标,求大佬帮帮忙,新手
import sensor, image, time sensor.reset() sensor.set_pixformat(sensor.RGB565) sensor.set_framesize(sensor.QVGA) sensor.skip_frames(time = 3000) sensor.set_auto_gain(False) # must be turned off for color tracking sensor.set_auto_whitebal(False) # must be turned off for color tracking clock = time.clock() def draw_hori_line(img, x0, x1, y, color): for x in range(x0, x1): img.set_pixel(x, y, color) # 绘制竖直线 def draw_vec_line(img, x, y0, y1, color): for y in range(y0, y1): img.set_pixel(x, y, color) while(True): clock.tick() img = sensor.snapshot().lens_corr(1.8) for c in img.find_circles(threshold = 8500, x_margin = 30, y_margin = 30, r_margin = 5, r_min = 10, r_max = 11, r_step = 2): area = (c.x()-c.r(), c.y()-c.r(), 2*c.r(), 2*c.r()) #area为识别到的圆的区域,即圆的外接矩形框 statistics = img.get_statistics(roi=area)#像素颜色统计 print(statistics) #(0,100,0,120,0,120)是红色的阈值,所以当区域内的众数(也就是最多的颜色),范围在这个阈值内,就说明是红色的圆。 #l_mode(),a_mode(),b_mode()是L通道,A通道,B通道的众数。 if 19<statistics.l_mode()<53 and -7<statistics.a_mode()<78 and -4<statistics.b_mode()<64:#if the circle is red img.draw_circle(c.x(), c.y(), c.r(), color = (255, 0, 0))#识别到的红色圆形用红色的圆框出来 elif 0<statistics.l_mode()<30 and -9<statistics.a_mode()<20 and -34<statistics.b_mode()<17:#if the circle is red img.draw_circle(c.x(), c.y(), c.r(), color = (0, 0, 255))#识别到的红色圆形用红色的圆框出来 print("FPS %f" % clock.fps())
-
颜色形状同时识别,我只想识别多个圆环中间那个圆点
import sensor, image, time sensor.reset() sensor.set_pixformat(sensor.RGB565) sensor.set_framesize(sensor.QQVGA) sensor.skip_frames(time = 2000) sensor.set_auto_gain(False) # must be turned off for color tracking sensor.set_auto_whitebal(False) # must be turned off for color tracking clock = time.clock() def draw_hori_line(img, x0, x1, y, color): for x in range(x0, x1): img.set_pixel(x, y, color) # 绘制竖直线 def draw_vec_line(img, x, y0, y1, color): for y in range(y0, y1): img.set_pixel(x, y, color) while(True): clock.tick() img = sensor.snapshot().lens_corr(1.8) for c in img.find_circles(threshold = 3500, x_margin = 10, y_margin = 10, r_margin = 10, r_min = 2, r_max = 100, r_step = 2): area = (c.x()-c.r(), c.y()-c.r(), 2*c.r(), 2*c.r()) #area为识别到的圆的区域,即圆的外接矩形框 statistics = img.get_statistics(roi=area)#像素颜色统计 print(statistics) #(0,100,0,120,0,120)是红色的阈值,所以当区域内的众数(也就是最多的颜色),范围在这个阈值内,就说明是红色的圆。 #l_mode(),a_mode(),b_mode()是L通道,A通道,B通道的众数。 if 16<statistics.l_mode()<65 and 6<statistics.a_mode()<108 and -14<statistics.b_mode()<102:#if the circle is red img.draw_circle(c.x(), c.y(), c.r(), color = (255, 0, 0))#识别到的红色圆形用红色的圆框出来 elif 0<statistics.l_mode()<35 and -12<statistics.a_mode()<22 and -34<statistics.b_mode()<10:#if the circle is red img.draw_circle(c.x(), c.y(), c.r(), color = (0, 0, 255))#识别到的红色圆形用红色的圆框出来 #将非红色的圆用白色的矩形框出来 print("FPS %f" % clock.fps())