导航

    • 登录
    • 搜索
    • 版块
    • 产品
    • 教程
    • 论坛
    • 淘宝
    1. 主页
    2. bgdg
    B
    • 举报资料
    • 资料
    • 关注
    • 粉丝
    • 屏蔽
    • 帖子
    • 楼层
    • 最佳
    • 群组

    bgdg

    @bgdg

    0
    声望
    3
    楼层
    465
    资料浏览
    0
    粉丝
    0
    关注
    注册时间 最后登录

    bgdg 关注

    bgdg 发布的帖子

    • openmv追踪模板

      0_16246741png

      
      # Blob Detection Example
      #
      # This example shows off how to use the find_blobs function to find color
      # blobs in the image. This example in particular looks for dark green objects.
      
      import sensor, image, time
      import car
      from pid import PID
      from image import SEARCH_EX, SEARCH_DS
      
      # You may need to tweak the above settings for tracking green things...
      # Select an area in the Framebuffer to copy the color settings.
      
      sensor.reset() # Initialize the camera sensor.
      sensor.set_pixformat(sensor.GRAYSCALE)
      sensor.set_framesize(sensor.QQVGA) # use QQVGA for speed.
      sensor.skip_frames(10) # Let new settings take affect.
      sensor.set_auto_whitebal(False) # turn this off.
      clock = time.clock() # Tracks FPS.
      
      # For color tracking to work really well you should ideally be in a very, very,
      # very, controlled enviroment where the lighting is constant...
      green_threshold   = (76, 96, -110, -30, 8, 66)
      size_threshold = 2000
      x_pid = PID(p=0.5, i=1, imax=100)
      h_pid = PID(p=0.05, i=0.1, imax=50)
      
      template = image.Image("/cup1.pgm")
      
      def find_max(blobs):
          max_size=0
          for blob in blobs:
              if blob[2]*blob[3] > max_size:
                  max_blob=blob
                  max_size = blob[2]*blob[3]
          return max_blob
      
      while(True):
          clock.tick() # Track elapsed milliseconds between snapshots().
          img = sensor.snapshot() # Take a picture and return the image.
      
          blobs = img.find_template(template, 0.70, step=4, search=SEARCH_EX) 
          if blobs:
              max_blob = find_max(blobs)
              x_error = max_blob[0]+max_blob[2]/2-img.width()/2
              h_error = max_blob[2]*max_blob[3]-size_threshold
              print("x error: ", x_error)
              '''
              for b in blobs:
                  # Draw a rect around the blob.
                  img.draw_rectangle(b[0:4]) # rect
                  img.draw_cross(b[5], b[6]) # cx, cy
              '''
              img.draw_rectangle(max_blob[0:4]) # rect
              img.draw_cross(int(max_blob[0]+max_blob[2]/2), int(max_blob[1]+max_blob[3]/2)) # cx, cy
              x_output=x_pid.get_pid(x_error,1)
              h_output=h_pid.get_pid(h_error,1)
              print("h_output",h_output)
              car.run(-h_output-x_output,-h_output+x_output)
          else:
              car.run(18,-18)
      
      
      发布在 OpenMV Cam
      B
      bgdg
    • RE: openmvplus和小车成功连接如何识别已经深度学习的物体?

      有没有什么案例代码可供参考 谢谢

      发布在 OpenMV Cam
      B
      bgdg
    • openmvplus和小车成功连接如何识别已经深度学习的物体?

      小车目前可以按照教程追踪某一个颜色物体运动,但是不知道怎样让小车识别已经深度学习的物体 表示出色块 并进行追踪

      发布在 OpenMV Cam
      B
      bgdg