A
agxb 发布的帖子
-
为什么二值化本来弄成了是黑白图,重置之后烧同样的程序变成了黑灰图,原来白色的地方变成了灰色,求助
THRESHOLD = (32, 0, -20, 14, -20, 20)# Grayscale threshold for dark things... 用阈值编辑器找出阈值 import sensor, image, time from pyb import LED #import car from pid import PID rho_pid = PID(p=0.4, i=0)##y=ax+b 为b截距 控制线在视野中的位置 theta_pid = PID(p=0.001, i=0) ##斜率 最终目的是要使直线在我们视野中央 LED(1).on() LED(2).on() LED(3).on()#打开openmv自带的补光灯 sensor.reset()##初始化 #sensor.set_vflip(True)##垂直反转 #sensor.set_hmirror(True)##设置镜像 水平翻转 sensor.set_pixformat(sensor.RGB565)##设置彩图 sensor.set_framesize(sensor.QQQVGA) # 80x60 (4,800 pixels) - O(N^2) max = 2,3040,000.分辨率 #sensor.set_windowing([0,20,80,40]) sensor.skip_frames(time = 2000) # WARNING: If you use QQVGA it may take seconds clock = time.clock() # to process a frame sometimes. while(True): clock.tick() img = sensor.snapshot().binary([THRESHOLD]) ##binary([THRESHOLD]二值化 line = img.get_regression([(0,100,0,0,0,0)],area_threshold=10,robust = True)##线性回归 (l_lo,l_hi,a_lo,a_hi,b_lo,b_hi) if (line): rho_err = abs(line.rho())-img.width()/2 if line.theta()>90: theta_err = line.theta()-180 else: theta_err = line.theta()##调整坐标 img.draw_line(line.line(), color = 127)##画出直线 print(rho_err,line.magnitude(),line.theta())##theta代表返回线段的角度, rho代表偏移的距离 rho更重要一些,如果不用theta,只用rho也是可以的。 if line.magnitude()>8: ##magnitude值越大证明线性回归越好 #if -40<b_err<40 and -30<t_err<30: rho_output = rho_pid.get_pid(rho_err,1) theta_output = theta_pid.get_pid(theta_err,1) output = rho_output+theta_output # car.run(50+output, 50-output) # else: #car.run(0,0) # else: # car.run(50,-50) pass #print(clock.fps())
from pyb import millis from math import pi, isnan class PID: _kp = _ki = _kd = _integrator = _imax = 0 _last_error = _last_derivative = _last_t = 0 _RC = 1/(2 * pi * 20) def __init__(self, p=0, i=0, d=0, imax=0): self._kp = float(p) self._ki = float(i) self._kd = float(d) self._imax = abs(imax) self._last_derivative = float('nan') def get_pid(self, error, scaler): tnow = millis() dt = tnow - self._last_t output = 0 if self._last_t == 0 or dt > 1000: dt = 0 self.reset_I() self._last_t = tnow delta_time = float(dt) / float(1000) output += error * self._kp if abs(self._kd) > 0 and dt > 0: if isnan(self._last_derivative): derivative = 0 self._last_derivative = 0 else: derivative = (error - self._last_error) / delta_time derivative = self._last_derivative + \ ((delta_time / (self._RC + delta_time)) * \ (derivative - self._last_derivative)) self._last_error = error self._last_derivative = derivative output += self._kd * derivative output *= scaler if abs(self._ki) > 0 and dt > 0: self._integrator += (error * self._ki) * scaler * delta_time if self._integrator < -self._imax: self._integrator = -self._imax elif self._integrator > self._imax: self._integrator = self._imax output += self._integrator return output def reset_I(self): self._integrator = 0 self._last_derivative = float('nan')