导航

    • 登录
    • 搜索
    • 版块
    • 产品
    • 教程
    • 论坛
    • 淘宝
    1. 主页
    2. aehu
    3. 楼层
    A
    • 举报资料
    • 资料
    • 关注
    • 粉丝
    • 屏蔽
    • 帖子
    • 楼层
    • 最佳
    • 群组

    aehu 发布的帖子

    • 4.5.8的固件,神经网络训练的代码,通过USB链接电脑供电可以脱机运行,但是通过5v供电不可以实现
      import sensor, image, time, os, ml, math, uos, gc,pyb
      from ulab import numpy as np
      from machine import UART
      sensor.reset()
      sensor.set_pixformat(sensor.GRAYSCALE)
      sensor.set_framesize(sensor.QVGA)
      sensor.set_windowing((120, 120))
      sensor.skip_frames(time=2000)
      threshold = (100, 255)
      net = None
      labels = None
      min_confidence = 0.5
      try:
          net = ml.Model("trained.tflite", load_to_fb=uos.stat('trained.tflite')[6] > (gc.mem_free() - (64*1024)))
      except Exception as e:
          raise Exception('Failed to load "trained.tflite", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')')
      try:
          labels = [line.rstrip('\n') for line in open("labels.txt")]
      except Exception as e:
          raise Exception('Failed to load "labels.txt", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')')
      colors = [
          (255,   0,   0),
          (  0, 255,   0),
          (255, 255,   0),
          (  0,   0, 255),
          (255,   0, 255),
          (  0, 255, 255),
          (255, 255, 255),
      ]
      threshold_list = [(math.ceil(min_confidence * 255), 255)]
      def fomo_post_process(model, inputs, outputs):
          ob, oh, ow, oc = model.output_shape[0]
          x_scale = inputs[0].roi[2] / ow
          y_scale = inputs[0].roi[3] / oh
          scale = min(x_scale, y_scale)
          x_offset = ((inputs[0].roi[2] - (ow * scale)) / 2) + inputs[0].roi[0]
          y_offset = ((inputs[0].roi[3] - (ow * scale)) / 2) + inputs[0].roi[1]
          l = [[] for i in range(oc)]
          for i in range(oc):
              img = image.Image(outputs[0][0, :, :, i] * 255)
              blobs = img.find_blobs(
                  threshold_list, x_stride=1, y_stride=1, area_threshold=1, pixels_threshold=1
              )
              for b in blobs:
                  rect = b.rect()
                  x, y, w, h = rect
                  score = (
                      img.get_statistics(thresholds=threshold_list, roi=rect).l_mean() / 255.0
                  )
                  x = int((x * scale) + x_offset)
                  y = int((y * scale) + y_offset)
                  w = int(w * scale)
                  h = int(h * scale)
                  l[i].append((x, y, w, h, score))
          return l
      clock = time.clock()
      led = pyb.LED(1)
      uart = UART(3, 9600)
      while(True):
          led.on()
          clock.tick()
          img = sensor.snapshot()
          img.binary([threshold])
          for i, detection_list in enumerate(net.predict([img], callback=fomo_post_process)):
              if i == 0: continue
              if len(detection_list) == 0: continue
              print("********** %s **********" % labels[i])
              result_str = str(labels[i])
              uart.write(result_str.encode())
      
      发布在 OpenMV Cam
      A
      aehu