导航

    • 登录
    • 搜索
    • 版块
    • 产品
    • 教程
    • 论坛
    • 淘宝
    1. 主页
    2. aedx
    A
    • 举报资料
    • 资料
    • 关注
    • 粉丝
    • 屏蔽
    • 帖子
    • 楼层
    • 最佳
    • 群组

    aedx

    @aedx

    0
    声望
    1
    楼层
    590
    资料浏览
    0
    粉丝
    0
    关注
    注册时间 最后登录

    aedx 关注

    aedx 发布的帖子

    • 神经网络识别,不管输出是1还是0下面都显示cihua
      # Edge Impulse - OpenMV Image Classification Example
      
      import sensor, image, time, os, tf, uos, gc
      from pyb import UART
      
      sensor.reset()                         # Reset and initialize the sensor.
      sensor.set_pixformat(sensor.RGB565)    # Set pixel format to RGB565 (or GRAYSCALE)
      sensor.set_framesize(sensor.QVGA)      # Set frame size to QVGA (320x240)
      sensor.set_windowing((240, 240))       # Set 240x240 window.
      sensor.skip_frames(time=2000)          # Let the camera adjust.
      uart = UART(3,9600)
      
      net = None
      labels = None
      
      try:
          # load the model, alloc the model file on the heap if we have at least 64K free after loading
          net = tf.load("trained.tflite", load_to_fb=uos.stat('trained.tflite')[6] > (gc.mem_free() - (64*1024)))
      except Exception as e:
          print(e)
          raise Exception('Failed to load "trained.tflite", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')')
      
      try:
          labels = [line.rstrip('\n') for line in open("labels.txt")]
      except Exception as e:
          raise Exception('Failed to load "labels.txt", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')')
      
      clock = time.clock()
      while(True):
          clock.tick()
      
          img = sensor.snapshot()
      
          # default settings just do one detection... change them to search the image...
          for obj in net.classify(img, min_scale=1.0, scale_mul=0.8, x_overlap=0.5, y_overlap=0.5):
              print("**********\nPredictions at [x=%d,y=%d,w=%d,h=%d]" % obj.rect())
              img.draw_rectangle(obj.rect())
              b = obj.output()   # a[(),(),()];print(a[0])
              c = b.index(max(b))
              if c == 0 or c == 1:
                 uart.write('n'+'\n')
                 print(c)
                 print("cihua")
                 
                 time.sleep_ms(500)
                 
               
              else :
                 uart.write('y'+'\n')
                 print(c)
                 print("xionghua")
                 time.sleep_ms(500# Edge Impulse - OpenMV Image Classification Example
                 
                 
                 
                 import sensor, image, time, os, tf, uos, gc
                 
                 from pyb import UART
                 
                 
                 
                 sensor.reset()                         # Reset and initialize the sensor.
                 
                 sensor.set_pixformat(sensor.RGB565)    # Set pixel format to RGB565 (or GRAYSCALE)
                 
                 sensor.set_framesize(sensor.QVGA)      # Set frame size to QVGA (320x240)
                 
                 sensor.set_windowing((240, 240))       # Set 240x240 window.
                 
                 sensor.skip_frames(time=2000)          # Let the camera adjust.
                 
                 uart = UART(3,9600)
                 
                 
                 
                 net = None
                 
                 labels = None
                 
                 
                 
                 try:
                 
                     # load the model, alloc the model file on the heap if we have at least 64K free after loading
                 
                     net = tf.load("trained.tflite", load_to_fb=uos.stat('trained.tflite')[6] > (gc.mem_free() - (64*1024)))
                 
                 except Exception as e:
                 
                     print(e)
                 
                     raise Exception('Failed to load "trained.tflite", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')')
                 
                 
                 
                 try:
                 
                     labels = [line.rstrip('\n') for line in open("labels.txt")]
                 
                 except Exception as e:
                 
                     raise Exception('Failed to load "labels.txt", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')')
                 
                 
                 
                 clock = time.clock()
                 
                 while(True):
                 
                     clock.tick()
                 
                 
                 
                     img = sensor.snapshot()
                 
                 
                 
                    
                 
                     for obj in net.classify(img, min_scale=1.0, scale_mul=0.8, x_overlap=0.5, y_overlap=0.5):
                 
                         
                 
                         img.draw_rectangle(obj.rect())
                 
                         b = obj.output()   # a[(),(),()];print(a[0])
                 
                         c = b.index(max(b))
                 
                         if c == 0 or c == 1:
                 
                            uart.write('n'+'\n')
                 
                            print(c)
                 
                            print("cihua")
                 
                            
                 
                            time.sleep_ms(500)
                 
                            
                 
                          
                 
                         else :
                 
                            uart.write('y'+'\n')
                 
                            print(c)
                 
                            print("xionghua")
                 
                            time.sleep_ms(500)                                       
      
      

      0_1683703277575_屏幕截图 2023-05-10 152101.png 11a7-image.png](https://fcdn.singtown.com/81070053-2ba3-4deb-8fbd-c2b3e077dd0c.png)

      发布在 OpenMV Cam
      A
      aedx