蜂鸣器是有源的3.3V
5
5nic
@5nic
0
声望
5
楼层
37
资料浏览
0
粉丝
0
关注
5nic 发布的帖子
-
蜂鸣器连接P0和3.3V引脚,蜂鸣器不响
import time from machine import Pin #from ulab import numpy as np buzzer = Pin("P0", Pin.OUT) while True: buzzer.high() time.sleep(2) buzzer.low()
-
Failed to load "trained.tflite"
# Edge Impulse - OpenMV Image Classification Example # # This work is licensed under the MIT license. # Copyright (c) 2013-2024 OpenMV LLC. All rights reserved. # https://github.com/openmv/openmv/blob/master/LICENSE import sensor, image, time, os, uos, gc, ml from ulab import numpy as np sensor.reset() # Reset and initialize the sensor. sensor.set_pixformat(sensor.RGB565) # Set pixel format to RGB565 (or GRAYSCALE) sensor.set_framesize(sensor.QVGA) # Set frame size to QVGA (320x240) sensor.set_windowing((240, 240)) # Set 240x240 window. sensor.skip_frames(time=2000) # Let the camera adjust. net = None labels = None try: # load the model, alloc the model file on the heap if we have at least 64K free after loading net = ml.Model("trained.tflite", load_to_fb=uos.stat('trained.tflite')[6] > (gc.mem_free() - (64*1024))) except Exception as e: print(e) raise Exception('Failed to load "trained.tflite", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')') try: labels = [line.rstrip('\n') for line in open("labels.txt")] except Exception as e: raise Exception('Failed to load "labels.txt", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')') clock = time.clock() while(True): clock.tick() img = sensor.snapshot() predictions_list = list(zip(labels, net.predict([img])[0].flatten().tolist())) for i in range(len(predictions_list)): print("%s = %f" % (predictions_list[i][0], predictions_list[i][1])) print(clock.fps(), "fps") ![0_1730909218195_捕获.PNG](https://fcdn.singtown.com/c5ff1923-0088-410f-8abb-f71c6211c5a2.PNG)