导航

    • 登录
    • 搜索
    • 版块
    • 产品
    • 教程
    • 论坛
    • 淘宝
    1. 主页
    2. 2dgr
    2
    • 举报资料
    • 资料
    • 关注
    • 粉丝
    • 屏蔽
    • 帖子
    • 楼层
    • 最佳
    • 群组

    2dgr

    @2dgr

    0
    声望
    2
    楼层
    17
    资料浏览
    0
    粉丝
    0
    关注
    注册时间 最后登录

    2dgr 关注

    2dgr 发布的帖子

    • 固件4.7.0不支持tf库了吗?为什么导入是时候没有报错、警告,调用里面的函数会报错?

      0_1751637419250_屏幕截图 2025-07-04 215636.png

      import sensor, time, tf
      
      sensor.reset()                         # Reset and initialize the sensor.
      sensor.set_pixformat(sensor.GRAYSCALE)    # Set pixel format to RGB565 (or GRAYSCALE)
      sensor.set_framesize(sensor.QVGA)      # Set frame size to QVGA (320x240)
      sensor.set_windowing((240, 240))       # Set 240x240 window.
      sensor.skip_frames(time=2000)          # Let the camera adjust.
      
      clock = time.clock()
      while(True):
          clock.tick()
          img = sensor.snapshot().binary([(0,64)])
          for obj in tf.classify("trained.tflite", img, min_scale=1.0, scale_mul=0.5, x_overlap=0.0, y_overlap=0.0):
              output = obj.output()
              number = output.index(max(output))
              print(number)
          print(clock.fps(), "fps")
      
      
      发布在 OpenMV Cam
      2
      2dgr
    • 训练数字识别的神经网络,tf库的函数好像都会报这个错误,用的openmv4 H7 plus,固件版本4.7.0,为什么?
      ![0_1751559431072_屏幕截图 2025-07-04 000943.png](https://fcdn.singtown.com/47d8c402-9d04-4bd7-8f1a-50ae0f1304b3.png) 
      
      import sensor, image, time, os, tf
      
      sensor.reset()                         # Reset and initialize the sensor.
      sensor.set_pixformat(sensor.GRAYSCALE)    # Set pixel format to RGB565 (or GRAYSCALE)
      sensor.set_framesize(sensor.QVGA)      # Set frame size to QVGA (320x240)
      sensor.set_windowing((240, 240))       # Set 240x240 window.
      sensor.skip_frames(time=2000)          # Let the camera adjust.
      
      clock = time.clock()
      while(True):
          clock.tick()
          img = sensor.snapshot().binary([(0,64)])
          for obj in tf.classify("trained.tflite", img, min_scale=1.0, scale_mul=0.5, x_overlap=0.0, y_overlap=0.0):
              output = obj.output()
              number = output.index(max(output))
              print(number)
      
      发布在 OpenMV Cam
      2
      2dgr