导航

    • 登录
    • 搜索
    • 版块
    • 产品
    • 教程
    • 论坛
    • 淘宝
    1. 主页
    2. 18852865532
    1
    • 举报资料
    • 资料
    • 关注
    • 粉丝
    • 屏蔽
    • 帖子
    • 楼层
    • 最佳
    • 群组

    18852865532

    @18852865532

    0
    声望
    14
    楼层
    812
    资料浏览
    0
    粉丝
    0
    关注
    注册时间 最后登录

    18852865532 关注

    18852865532 发布的帖子

    • openmv无法更新程序

      openmv无法更新程序,有可能是什么问题呢?具体表现为:在IDE中可以运行程序,也能成功保存,一旦掉电后重新裸机运行,就是默认程序,打开H盘的main.py也是默认的程序

      发布在 OpenMV Cam
      1
      18852865532
    • 在验证模板匹配时出现这样的报错,怎么解决呢?

      0_1573266714532_1.PNG

      # image patches to parts of an image... expect for extremely controlled enviorments
      # NCC is not all to useful.
      #
      # WARNING: NCC supports needs to be reworked! As of right now this feature needs
      # a lot of work to be made into somethin useful. This script will reamin to show
      # that the functionality exists, but, in its current state is inadequate.
      
      import time, sensor, image
      from image import SEARCH_EX, SEARCH_DS
      
      # Reset sensor
      sensor.reset()
      
      # Set sensor settings
      sensor.set_contrast(1)
      sensor.set_gainceiling(16)
      # Max resolution for template matching with SEARCH_EX is QQVGA
      sensor.set_framesize(sensor.QQVGA)
      # You can set windowing to reduce the search image.
      #sensor.set_windowing(((640-80)//2, (480-60)//2, 80, 60))
      sensor.set_pixformat(sensor.GRAYSCALE)
      
      # Load template.
      # Template should be a small (eg. 32x32 pixels) grayscale image.
      template = image.Image("/1.pgm")
      
      clock = time.clock()
      
      # Run template matching
      while (True):
          clock.tick()
          img = sensor.snapshot()
      
          # find_template(template, threshold, [roi, step, search])
          # ROI: The region of interest tuple (x, y, w, h).
          # Step: The loop step used (y+=step, x+=step) use a bigger step to make it faster.
          # Search is either image.SEARCH_EX for exhaustive search or image.SEARCH_DS for diamond search
          #
          # Note1: ROI has to be smaller than the image and bigger than the template.
          # Note2: In diamond search, step and ROI are both ignored.
          r = img.find_template(template, 0.70, step=4, search=SEARCH_EX) #, roi=(10, 0, 60, 60))
          if r:
              img.draw_rectangle(r)
      
          print(clock.fps())
      
      
      发布在 OpenMV Cam
      1
      18852865532
    • RE: 关于openmv卡死的问题

      @kidswong999 感谢解惑,有没有可能是频繁链接或断开IDE所导致的呢?

      发布在 OpenMV Cam
      1
      18852865532
    • 关于openmv卡死的问题

      你好,我在进行颜色识别的过程中发现openmv会不时卡住,请问这是什么原因呢?自己猜想,是不是跟自己在同个图像中进行了两次分区域识别有关,希望有知道的大佬指点一下,另外,在卡住之后图像会直接与摄像头断开连接,这个问题非常致命!

      import sensor, image, time,math
      from pyb import UART
      import json
      
      sensor.reset() # Initialize the camera sensor.
      sensor.set_pixformat(sensor.RGB565) # use RGB565.
      sensor.set_framesize(sensor.QQVGA) # use QVGA for quailtiy ,use QQVGA for speed.
      sensor.skip_frames(10) # Let new settings take affect.
      #sensor.set_auto_gain(False) # must be turned off for color tracking
      sensor.set_auto_whitebal(False)
      sensor.set_vflip(True)
      clock = time.clock() # Tracks FPS.
      
      #初始化
      uart = UART(3, 115200)
      
      color_threshold1 = (0, 255, -40, -20, 10, 35)
      color_threshold2 = (0, 255, -40, -20, 10, 35)
      
      date1=0
      date2=100
      
      while(True):
          flag1=1
          flag2=0
          clock.tick() # Track elapsed milliseconds between snapshots().
          img = sensor.snapshot() # Take a picture and return the image.
      
          #查看是否检测到了绿色基座
          blobs = img.find_blobs([color_threshold1],roi=[40,60,80,60], area_threshold=300)
      
          if blobs:   #如果找到了目标颜色
              for blob in blobs:  #迭代找到的目标颜色区域
      
                  is_rect = 0
                  rect_s=0
                  max_s = -1
      
                  for c in img.find_rects():
      
                      is_rect = 1
                      rect_s=c.y()*c.h()
      
                      if rect_s > max_s:
      
                          max_s = rect_s
                          max_rect = c
      
                  if is_rect:
      
                      flag2=1
                      img.draw_rectangle(blob.rect()) # rect # 如果有对应颜色的矩形 标记外框
                      img.draw_cross(blob[5], blob[6]) # cx, cy  画出十字
                      date1=int(blob.cx()-80)
      
      
          #查看是否检测到了水稻
          blobs=img.find_blobs([color_threshold2],roi=[40,0,80,60],x_stride=10,y_stride=10,area_threshold=500,merge=True,pixels_threshold=50)
      
          if blobs:
              flag1=0
              max_blob=-1
              mblob=0
              for blob in blobs:
                  if blob.area()>max_blob:
                      mblob=blob
      
              img.draw_rectangle(mblob.rect()) # rect
      
      
          if (flag1 and flag2):
              date=bytearray([0xDD,date1,0XDF])
              print(date1)
              #uart.write(date)
              flag1=1
              flag2=0
          else:
              date=bytearray([0xDD,date2,0XDF])
              print(date2)
              #uart.write(date)
              flag1=1
              flag2=0
              
          #print(clock.fps()) # Note: Your OpenMV Cam runs about half as fast while
      
      
      
      
      发布在 OpenMV Cam
      1
      18852865532
    • RE: openmv什么时候可以使用VGA模式?

      @kidswong999 嗯,多谢解惑呀

      发布在 OpenMV Cam
      1
      18852865532
    • openmv什么时候可以使用VGA模式?

      我在把颜色识别和形状识别结合在一起的时候,发现可能是像素点太少的缘故,当距离较远或者角度不正的时候,会识别失败,所以想把QQVGA换成VGA,但是它会报错如下,有人知道怎么才能使用VGA模式吗?我用的7725v3和stm32H7芯片,所以不用担心处理速度的问题。

      import sensor, image, time
      color_threshold1 = (0, 255, 40, 80, 40, 70)
      color_threshold2 = (0, 130, 40, 80, 40, 70)
      
      sensor.reset() # Initialize the camera sensor.
      
      sensor.set_pixformat(sensor.RGB565) # use RGB565.
      
      sensor.set_framesize(sensor.QQVGA) # use QVGA for quailtiy ,use QQVGA for speed.
      
      sensor.skip_frames(10) # Let new settings take affect.
      
      sensor.set_auto_whitebal(False)
      
      #关闭白平衡。白平衡是默认开启的,在颜色识别中,需要关闭白平衡。
      
      clock = time.clock() # Tracks FPS.
      
      #扩宽roi
      def expand_roi(roi):
      
          # set for QQVGA 160*120
      
          extra = 5
      
          win_size = (160, 120)
      
          (x, y, width, height) = roi
      
          new_roi = [x-extra, y-extra, width+2*extra, height+2*extra]
      
      
      
          if new_roi[0] < 0:
      
              new_roi[0] = 0
      
          if new_roi[1] < 0:
      
              new_roi[1] = 0
      
          if new_roi[2] > win_size[0]:
      
              new_roi[2] = win_size[0]
      
          if new_roi[3] > win_size[1]:
      
              new_roi[3] = win_size[1]
      
      
      
          return tuple(new_roi)
      
      
      
      while(True):
      
          clock.tick() # Track elapsed milliseconds between snapshots().
      
          img = sensor.snapshot() # Take a picture and return the image.
      
          #  pixels_threshold=100, area_threshold=100
      
          blobs = img.find_blobs([color_threshold1], area_threshold=150)
      
      
      
          if blobs:
      
          #如果找到了目标颜色
      
              print(blobs)
      
              for blob in blobs:
      
              #迭代找到的目标颜色区域
      
                  is_rect = 0
      
                  rect_s=0
      
                  max_s = -1
      
      
                  new_roi = expand_roi(blob.rect())
      
      
                  for c in img.find_rects():
      
                      is_rect = 1
      
                      rect_s=c.y()*c.h()
                      # img.draw_rectangle(x,y,w,h [,color[,thickness=1[,fill=False]]])
      
                      if rect_s > max_s:
      
                          max_s = rect_s
      
                          max_rect = c
      
                  if is_rect:
      
                      # 如果有对应颜色的矩形 标记外框
      
                      img.draw_rectangle(new_roi) # rect
      
                      img.draw_rectangle(blob.rect()) # rect
      
                      #用矩形标记出目标颜色区域
      
                      img.draw_cross(blob[5], blob[6]) # cx, cy
      
                      img.draw_rectangle(max_rect.x(), max_rect.y(), max_rect.w(),  max_rect.h(),color = (0, 255, 0))
      
                      img.draw_rectangle(max_rect.x()-1, max_rect.y()-1, max_rect.w()+2,  max_rect.h()+2,color = (0, 255, 0))
      
      
      
      
      
          print(clock.fps()) # Note: Your OpenMV Cam runs about half as fast while
      
          # connected to your computer. The FPS should increase once disconnected.
      ![0_1563880779720_1.PNG](https://fcdn.singtown.com/55dd819e-826d-4e91-a4ac-083e8576c64b.PNG) 
      
      发布在 OpenMV Cam
      1
      18852865532
    • RE: 如何减少颜色识别时不同光照条件带来的影响

      @kidswong999 谢谢提示,我试试哦

      发布在 OpenMV Cam
      1
      18852865532
    • RE: 做openmv颜色识别,实践过程中发现光线对其影响很大。因此想具体了解光线有哪些影响,还有如何去改善。

      帮顶,我也需要解决这个问题

      发布在 OpenMV Cam
      1
      18852865532
    • 如何减少颜色识别时不同光照条件带来的影响

      之前在使用openMv的时候就发现,不同光照条件对颜色识别的影响很大,所以我在减少光照对颜色识别的影响的方法,望知道的高手指点一下,目前准备用ov7725V3和stm32h7来运行

      发布在 OpenMV Cam
      1
      18852865532