导航

    • 登录
    • 搜索
    • 版块
    • 产品
    • 教程
    • 论坛
    • 淘宝
    1. 主页
    2. 18158518365
    1
    • 举报资料
    • 资料
    • 关注
    • 粉丝
    • 屏蔽
    • 帖子
    • 楼层
    • 最佳
    • 群组

    18158518365

    @18158518365

    0
    声望
    4
    楼层
    840
    资料浏览
    0
    粉丝
    0
    关注
    注册时间 最后登录

    18158518365 关注

    18158518365 发布的帖子

    • 请问如何识别某个货架是空的?

      小弟现在在做自动上货机器人,实现功能为从仓库取出物品并放到指定的货架上(货架必须是空的)。现在苦于如何识别出某个货架是空的,要上货的货架正面跟背面为打开状态,可以通过一面看到货架之后。

      发布在 OpenMV Cam
      1
      18158518365
    • 多特征点识别时提示错误Descriptors have different types!

      代码如下:
      ```
      import sensor, time, image

      Reset sensor

      sensor.reset()

      Sensor settings

      sensor.set_contrast(3)
      sensor.set_gainceiling(16)
      sensor.set_framesize(sensor.VGA)
      sensor.set_windowing((320, 240))
      sensor.set_pixformat(sensor.GRAYSCALE)

      sensor.skip_frames(time = 2000)
      sensor.set_auto_gain(False, value=100)
      sensor.set_brightness(-3)
      clock = time.clock()
      kernel_size = 1 # kernel width = (size2)+1, kernel height = (size2)+1
      kernel = [-1, -1, -1,
      -1, +9, -1,
      -1, -1, -1]
      def draw_keypoints(img, kpts):
      print(kpts)
      img.draw_keypoints(kpts)
      img = sensor.snapshot()
      time.sleep(1000)

      NOTE: uncomment to load a keypoints descriptor from file

      kpts1 = image.load_descriptor("/SWW_F.orb")
      kpts2 = image.load_descriptor("/SWW_R.orb")
      img = sensor.snapshot()
      img.morph(kernel_size, kernel)
      draw_keypoints(img, kpts1)

      clock = time.clock()
      while (True):
      clock.tick()
      img = sensor.snapshot()
      img.morph(kernel_size, kernel)
      if (kpts1 == None):
      # NOTE: By default find_keypoints returns multi-scale keypoints extracted from an image pyramid.
      kpts3 = img.find_keypoints(max_keypoints=150, threshold=10, scale_factor=1.2)
      draw_keypoints(img, kpts1)
      else:
      # NOTE: When extracting keypoints to match the first descriptor, we use normalized=True to extract
      # keypoints from the first scale only, which will match one of the scales in the first descriptor.
      kpts3 = img.find_keypoints(max_keypoints=150, threshold=10, normalized=True)
      if (kpts2):
      match1 = image.match_descriptor(kpts1, kpts3, threshold=85)
      match2 = image.match_descriptor(kpts2, kpts3, threshold=85)
      if (match1.count()>12):
      # If we have at least n "good matches"
      # Draw bounding rectangle and cross.
      img.draw_rectangle(match1.rect())
      img.draw_cross(match1.cx(), match1.cy(), size=10)
      if (match2.count()>12):
      # If we have at least n "good matches"
      # Draw bounding rectangle and cross.
      img.draw_rectangle(match2.rect())
      img.draw_cross(match2.cx(), match2.cy(), size=10)

              # NOTE: uncomment if you want to draw the keypoints
              #img.draw_keypoints(kpts2, size=KEYPOINTS_SIZE, matched=True)
      
      # Draw FPS
      img.draw_string(0, 0, "FPS:%.2f"%(clock.fps()))
      
      
      
      
      运行一段时间内识别正常,一段时间后于“match1 = image.match_descriptor(kpts1, kpts3, threshold=85)”这句提示错误Descriptors have different types!
      发布在 OpenMV Cam
      1
      18158518365
    • RE: 如何用OPENMV识别钢丝球?

      0_1524396505302_TIM图片20180422192620.jpg
      你好,我的项目是通过OPENMV区分各种物品,除了钢丝球外还有很多需要识别的东西,你的方案在腐蚀膨胀后很多东西都一样,无法进行区分了,我现在通过二值化加锐化得到这张很有特征的图片,但特征点识别在这里也不好用,请问还有什么方法吗

      发布在 OpenMV Cam
      1
      18158518365
    • 如何用OPENMV识别钢丝球?

      0_1524136125558_b6eccf33-2fe4-4918-b6ce-07cf9678dffd-image.png
      如图这样的钢丝球,特征点检测的效果并不好,颜色识别也无法跟周围的物品很好的区分开来

      发布在 OpenMV Cam
      1
      18158518365