matlab端口
% 配置串口
clear all
delete(instrfindall)
instrreset()
s = serialport('COM10',115200);
configureTerminator(s,"LF")
fprintf('Serial port is open and configured.\n');
%device.Terminator
while true
data = readline(s);
disp(data);
end
% Close the serial port when done
fclose(s);
Z
zhq6
@zhq6
0
声望
2
楼层
206
资料浏览
0
粉丝
0
关注
zhq6 发布的帖子
-
RE: 有大佬帮忙看看openmv怎么和matlab通信吗?
-
有大佬帮忙看看openmv怎么和matlab通信吗?
Openmv
import sensor, image, time, os, tf, uos, gc, lcd, pyb from pyb import Pin,Timer,LED from pyb import UART #import json sensor.reset() # Reset and initialize the sensor. sensor.set_pixformat(sensor.RGB565) # Set pixel format to RGB565 (or GRAYSCALE) sensor.set_framesize(sensor.QVGA) # Set frame size to QVGA (320x240) sensor.set_windowing((240, 240)) # Set 240x240 window. sensor.skip_frames(time=2000) # Let the camera adjust. sensor.set_auto_whitebal(False) # turn this off. apple=(15, 54, 75, 10, -57, 55) orange=(55, 98, -128, 127, 23, 127) #(55, 98, -128, 127, 23, 127),(13, 55, -11, 24, 9, 97) #strawberry=() net = None labels = None key1=Pin('P1',Pin.IN,Pin.PULL_UP) #启动 key2=Pin('P2',Pin.IN,Pin.PULL_UP) #停止 LED=Pin('P9',Pin.OUT_PP,Pin.PULL_NONE) StartFlag=0 #开始标志 try: # load the model, alloc the model file on the heap if we have at least 64K free after loading net = tf.load("trained.tflite", load_to_fb=uos.stat('trained.tflite')[6] > (gc.mem_free() - (64*1024))) except Exception as e: print(e) raise Exception('Failed to load "trained.tflite", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')') try: labels = [line.rstrip('\n') for line in open("labels.txt")] except Exception as e: raise Exception('Failed to load "labels.txt", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')') clock = time.clock() uart=UART(3,115200) uart.init(115200, bits=8, parity=None,timeout=1000, read_buf_len=128) #8位数据位,无校验位,1位停止位、 #uart = pyb.USB_VCP() def sending_data(size): global uart; #data = ustruct.pack("<bbhhh", #格式为俩个字符俩个短整型(2字节) #0x2C, #帧头1 #0x12, #帧头2 #int(size), # up sample by 4 #数据1) data=str(size) uart.write(data); #必须要传入一个字节数组 while(True): clock.tick() ###############################启动停止识别程序############################################## img = sensor.snapshot() if key1.value()==0: # 按钮启动 LED.value(1) #LED灯亮 while key1.value()==0: key1.value() StartFlag=1 #开始识别 if key2.value()==0: # 按钮启动 LED.value(1) #LED灯亮 while key2.value()==0: key2.value() StartFlag=0 #停止识别 LED.value(0) ############################################################################################ #################################神经网络分类并画框读出尺寸################################################ # default settings just do one detection... change them to search the image... if StartFlag==0: for obj in net.classify(img, min_scale=1.0, scale_mul=0.8, x_overlap=0.5, y_overlap=0.5): #print("**********\nPredictions at [x=%d,y=%d,w=%d,h=%d]" % obj.rect()) #img.draw_rectangle(obj.rect()) # This combines the labels and confidence values into a list of tuples predictions_list = list(zip(labels, obj.output())) for i in range(len(predictions_list)): print("%s = %f" % (predictions_list[i][0], predictions_list[i][1])) if predictions_list[i][0] == 'apple': apple_blobs=img.find_blobs([apple]) if len(apple_blobs) == 1: b=apple_blobs[0] img.draw_rectangle(b[0:4],color=(255,0,0)) # rect img.draw_cross(b[5], b[6]) # cx, cy length=b[2]-b[0] width=b[3]-b[1] #size=str(length if length>width else width) #print(size) #data_out=json.dumps(size) #uart.write(data_out+'\n') size=length if length>width else width print(size) sending_data(size) if predictions_list[i][0] == 'orange': orange_blobs=img.find_blobs([orange]) if len(orange_blobs) == 1: b=orange_blobs[0] img.draw_rectangle(b[0:4],color=(250, 140, 53)) # rect img.draw_cross(b[5], b[6]) # cx, cy length=b[2]-b[0] width=b[3]-b[1] #size=str(length if length>width else width) #print(size) #data_out=json.dumps(size) #uart.write(data_out+'\n') size=length if length>width else width print(size) sending_data(size) #################################窗口显示水果种类############################# if predictions_list[i][1]>0.75: LED.value(1) #LED灯亮 img.draw_string(30,10,predictions_list[i][0],color=(255,0,0),scale=2,x_spacing=1,mono_space=False,string_rotation=0,) ############################################################################# else: img.draw_string(30,0,"Stop",color=(255,0,0), scale=2,x_spacing=1,mono_space=False,string_rotation=0) print(clock.fps(), "fps")