,,,,,,,gfgfgfgfgf
M
mi62
@mi62
0
声望
11
楼层
412
资料浏览
0
粉丝
0
关注
mi62 发布的帖子
-
为什么最后一句会报错“non-keyword arg after keyword arg”
img = sensor.snapshot().lens_corr(1.8)
for r in img.find_blobs(thresholds1=[30,100,-64,-8,-32,32],invert=False,roi)
img.draw_rectangle(blob.rect(),color = (255, 0, 0)) -
RE: 为什么这个程序他只能识别出红色?
这段代码大致就是六个色块,从上往下排列,一个色块有一种颜色(总共三种),一个数字代表一个色块,然后你按顺序输出对应的数字,但是他最后只能识别到红色,(我觉得我阈值设置的没有问题
-
为什么这个程序他只能识别出红色?
import sensor, image, time, math # Color Tracking Thresholds (L Min, L Max, A Min, A Max, B Min, B Max) # The below thresholds track in general red/green things. You may wish to tune them... thresholds = [(13, 30, 1, 45, -24, 47), # generic_red_thresholds (23, 55, -44, -24, -2, 39), # generic_green_thresholds (0, 15, 0, 40, -80, -20)] # generic_blue_thresholds # You may pass up to 16 thresholds above. However, it's not really possible to segment any # scene with 16 thresholds before color thresholds start to overlap heavily. sensor.reset() sensor.set_pixformat(sensor.RGB565) sensor.set_framesize(sensor.QVGA) sensor.skip_frames(time = 2000) sensor.set_auto_gain(False) # must be turned off for color tracking sensor.set_auto_whitebal(False) # must be turned off for color tracking clock = time.clock() # Only blobs that with more pixels than "pixel_threshold" and more area than "area_threshold" are # returned by "find_blobs" below. Change "pixels_threshold" and "area_threshold" if you change the # camera resolution. Don't set "merge=True" becuase that will merge blobs which we don't want here. while(True): clock.tick() red=[] green=[] blue=[] shit=[] order=[] img = sensor.snapshot().lens_corr(1.8) for r in img.find_rects(threshold = 10000): img.draw_rectangle(r.rect(), color = (255, 0, 0)) for p in r.corners(): img.draw_circle(p[0], p[1], 5, color = (0, 255, 0)) area = (r.rect()) #area为识别到的矩形的区域 statistics = img.get_statistics(roi=area)#像素颜色统计i=0,j=0,n=0 #print(statistics) #(0,100,0,120,0,120)是红色的阈值 #l_mode(),a_mode(),b_mode()是L通道,A通道,B通道的众数。 if 8<statistics.l_mode()<20 and 10<statistics.a_mode()<45 and 0<statistics.b_mode()<36: img.draw_rectangle(area, color = (255, 0, 0))#识别到的红色矩形用红色的矩形框出来 if 1.8<(r.w()/r.h())<2.2: red.append(r.y()) elif (0.8<(r.w()/r.h())<1.2): red.append(r.y()) red.append(r.y()-r.h()/2) elif (0.5<=(r.w()/r.h())<=0.79): red.append(r.y()-2*r.h()/3) red.append(r.y()-r.h()/3) red.append(r.y()) if 30<statistics.l_mode()<51 and -45<statistics.a_mode()<-21 and 9<statistics.b_mode()<46: img.draw_rectangle(area, color = (255, 0, 0)) if 1.8<=r.w()/r.h()<=2.2: green.append(r.y()) elif(0.8<=r.w()/r.h()<=1.2): green.append(r.y()) green.append(r.y()-r.h()/2) elif(0.5<=r.w()/r.h()<0.8): green.append(r.y()) green.append(r.y()-2*r.h()/3) green.append(r.y()-r.h()/3) if 44<statistics.l_mode()<55 and -30<statistics.a_mode()<-5 and -24<statistics.b_mode()<0: img.draw_rectangle(area, color = (255, 0, 0)) if 1.8<=r.w()/r.h()<=2.2: blue.append(r.y()) elif(0.8<=r.w()/r.h()<=1.2): blue.append(r.y()-r.h()/2) blue.append(r.y()) elif(0.5<=r.w()/r.h()<0.8): blue.append(r.y()) blue.append(r.y()-2*r.h()/3) blue.append(r.y()-h/3) l1=len(red) l2=len(green) l3=len(blue) i=0 while i<l1: shit.append(red[i]) order.append(3) i=i+1 while i<(l1+l2): shit.append(green[i-l1]) order.append(1) i=i+1 while i<(l1+l2+l3): shit.append(blue[i-l1-l2]) order.append(2) i=i+1 i=0 n=0 print('red') print(red) while len(shit)<6: shit.append(0) order.append(0) n=n+1 for i in range(5): for j in range(5-i): if shit[j]>shit[j+1]: shit[j],shit[j+1]=shit[j+1],shit[j] order[j],order[j+1]=order[j+1],order[j] print(order)