openmv如何控制pixhawk前后左右并循线走?
-
四轴多旋翼零件清单
1.cube purple(飞控)
2.openmv h7 plus(光流定点及循线)
3.激光雷达(定高)
-
这个在github上能找到别人开源的代码,是用在openmv端的,但是我自己没有试过,在这里复制给你看了,是光流加循线的(话说你是不是有两个号)
import sensor, image, time, math,pyb from pyb import Pin, Timer,UART uart = pyb.UART(3,115200,timeout_char = 1000)#串口初始化 # Tracks a black line. Use [(128, 255)] for a tracking a white line. GRAYSCALE_THRESHOLD = [(0, 50)] #ROIS = [ #[ROI, weight]越近,权重越大,在这里权值暂时不考虑 # (7, 22, 50, 8, 0),#下面1 # (7, 12, 50, 8, 0),#中间2 # (7, 1, 50, 8, 0),#上面3 # (0, 0, 8, 31, 0),#左边4 # (56,0 , 8, 31, 0) #右边5 # ] ROIS = [ #[ROI, weight]越近,权重越大,在这里权值暂时不考虑 (0, 55, 64, 8, 0), #下面1 (0, 28, 64, 8, 0), #中间2 (0, 0, 64, 8, 0), #上面3 (0, 0, 8, 64, 0), #左边4 (56,0 , 8, 64, 0) #右边5 ] weight_sum = 0 for r in ROIS: weight_sum += r[4] # r[4] is the roi weight. #----------------------------------------寻找直线变量----------------------------------------# enable_lens_corr = False # turn on for straighter lines... min_degree = 0 max_degree = 179 a1=0; b1=0; c1=0; a2=0; b2=0; c2=0; last_x=0; last_y=0; #---------------------------------------摄像头初始化-----------------------------------------# sensor.reset() sensor.set_pixformat(sensor.GRAYSCALE) sensor.set_framesize(sensor.B64X64) # 颜色追踪:160*120 光流检测:40*30 sensor.skip_frames(time=2000) sensor.set_auto_gain(False) # 颜色追踪关闭自动增益 sensor.set_auto_whitebal(False) # 颜色追踪关闭白平衡 delta_x=0; delta_y=0; flag=0; i=0; #记录第几行数据 j=0; #记录直线数量 led=pyb.LED(3)#必要的时候进行红外补光 #检测圆形中心点的坐标 center_x=0; center_y=0; center_update=1;#中心圆位置更新的标志 center_x_old=0; center_y_old=0; center_pos_old=0; center_x_down=0; center_y_down=0; center_x_up=0; center_y_up=0; center_x_mid=0; center_y_mid=0; center_y_left=0; center_x_left=0; center_y_right=0; center_x_right=0; center_flag1=0;#上下 center_flag2=0;#左右 center_flag3=0;#通过roll来调整黑线的位置 通过yaw来调整机头方向 矩形1和2=0; center_flag4=0; center_flag5=0; turn_flag=0;#转弯的标志 yaw_angle=0; out_str1=''; clock = time.clock() #帧率 old_img= sensor.snapshot().mean_pooled(4,4) # 160x120 -> 40x30,前一张照片 #定义一个定时发送数据的函数 def tick(timer):#we will receive the timer object when being called global flag flag=1 tim = Timer(4,freq=20) # create a timer object using timer 4 - trigger at 1Hz tim.callback(tick) # set the callback to our tick function #--------------------------------------while循环开始-----------------------------------------# while(True): #led.on() if(flag==1): img=sensor.snapshot() img_old=img.copy() img.lens_corr(1.5) # for 2.8mm lens...摄像头畸变纠正 #--------------------------------------光流定点-----------------------------------------# old = sensor.alloc_extra_fb(16, 16, sensor.GRAYSCALE) old.replace(sensor.snapshot().mean_pooled(4,4)) new_img = sensor.snapshot().mean_pooled(4,4) displacement = old.find_displacement(new_img) old_img.replace(new_img) delta_x0 = int(displacement.x_translation() * 5) / 5.0 delta_y0 = int(displacement.y_translation() * 5) / 5.0 delta_x = 10*delta_x0 delta_y = 10*delta_y0 #--------------------------------------检测直线交点的位置---------------------------------------# lines = img_old.find_lines(threshold=1000, theta_margin = 50, rho_margin = 50) for i in range(0,len(lines)-1): for j in range(i+1,len(lines)): l0x1 = lines[i].x1() l0x2 = lines[i].x2() l0y2 = lines[i].y2() l0y1 = lines[i].y1() if(l0x1 == l0x2): l0x1 = l0x1 + 0.1 a0 = (l0y2 - l0y1)/(l0x2 - l0x1) b0 = l0y1 - a0*l0x1 l1x1 = lines[j].x1() l1y1 = lines[j].y1() l1x2 = lines[j].x2() l1y2 = lines[j].y2() if(l1x1 == l1x2): l1x1 = l1x1 + 0.1 a1 = (l1y2 - l1y1)/(l1x2 - l1x1) b1 = l1y1 - a1*l1x1 if(a0==a1): a0 = a0+ 0.1 intersectionx = (b1-b0)/(a0-a1) intersectiony = a0*intersectionx + b0 #if(a0*a1 > -1.5 and a0*a1 < 0.7 ): #img.draw_circle(int(intersectionx), int(intersectiony),10) if((intersectionx-last_x)>2 or (intersectionx-last_x)<-2): last_x=intersectionx; if((intersectiony-last_y)>2 or (intersectiony-last_y)<-2): last_y=intersectiony; #img.binary(GRAYSCALE_THRESHOLD,invert=1); #--------------------------------------寻找黑线和圆心的位置--------------------------------------# centroid_sum=0#暂时用不到这个变量 #检测圆形位置 for r in ROIS: i=i+1; blobs=img_old.find_blobs(GRAYSCALE_THRESHOLD, roi=r[0:4], merge=True,pixels_area=10) # r[0:4] is roi tuple. if blobs:#如果找到了颜色块 # Find the blob with the most pixels. largest_blob = max(blobs, key=lambda b: b.pixels()) if(i==1):#下面矩形 if(largest_blob[2]<=15 and largest_blob[2]>=2):#排除瑕疵点 if(largest_blob[3]>=2): center_x_down=largest_blob.cx(); center_y_down=largest_blob.cy(); center_flag1=1;#下面的矩形找到的标志 img.draw_rectangle(largest_blob.rect()) img.draw_cross(largest_blob.cx(),largest_blob.cy(),2) elif(i==2):#中间矩形 if(largest_blob[2]<=15 and largest_blob[2]>=2): if(largest_blob[3]>=2): center_x_mid=largest_blob.cx(); center_y_mid=largest_blob.cy(); center_flag2=1; img.draw_rectangle(largest_blob.rect()) img.draw_cross(largest_blob.cx(),largest_blob.cy(),2) elif(i==3):#上面的矩形 center_flag3=2;#有找到,但是不符合要求 if(largest_blob[2]<=10 and largest_blob[2]>=2): if(largest_blob[3]>=2): center_x_up=largest_blob.cx(); center_y_up=largest_blob.cy(); center_flag3=1; img.draw_rectangle(largest_blob.rect()) img.draw_cross(largest_blob.cx(),largest_blob.cy(),2) elif(i==4):#左边的矩形找到了 if(largest_blob[3]<=15 and largest_blob[3]>=2): if(largest_blob[2]>=2): center_y_left=largest_blob.cy(); center_x_left=largest_blob.cx(); center_flag4=1; img.draw_rectangle(largest_blob.rect()) img.draw_cross(largest_blob.cx(),largest_blob.cy(),2) elif(i==5): if(largest_blob[3]<=15 and largest_blob[3]>=2): if(largest_blob[2]>=2): center_y_right=largest_blob.cy(); center_x_right=largest_blob.cx(); center_flag5=1; img.draw_rectangle(largest_blob.rect()) img.draw_cross(largest_blob.cx(),largest_blob.cy(),2) for l in lines:#画出所有的直线 img.draw_line(l.line()) img.draw_cross(int(last_x), int(last_y),3,color=0) img.draw_circle(int(last_x), int(last_y),3,color=0) #print(last_x,last_y) #1开始计算中心圆x坐标 if(center_flag1==1 and center_flag3!=1): center_x=center_x_down; elif(center_flag1==0 and center_flag3==1): center_x=center_x_up; elif(center_flag1==1 and center_flag3==1): center_x=int((center_x_up+center_x_down)/2)#这样计算即使机头偏离了十字中心,中心点位置也是准确地 else: center_x=center_x_old;#如果没找到就返回上一次的值 #2开始计算中心圆y坐标 if(center_flag4==1 and center_flag5==0): center_y=center_y_left; elif(center_flag4==0 and center_flag5==1): center_y=center_y_right; elif(center_flag4==1 and center_flag5==1): center_y=int((center_y_left+center_y_right)/2) else: center_y=center_y_old;#如果没找到就返回上一次的值 center_x_old=center_x; center_y_old=center_y; img.draw_circle(center_x,center_y,3); img.draw_cross(center_x,center_y,3); #3开始检测直角 #if(center_flag3==0 and center_flag1==1 and center_flag4==1): if(center_flag3==0 and center_flag1==1 and center_flag4==1): turn_flag=1;#左转 if(center_flag3==0 and center_flag1==1 and center_flag5==1): turn_flag=1;#右转 if(center_flag1==0): center_x_down=32; if(center_flag2==0): center_x_mid=32; if(center_flag3!=1): center_x_up=32; center_pos=int(center_x_down+center_x_mid+center_x_up)/3 if(center_flag1==0 and center_flag2==0 and center_flag3==0): center_pos=center_pos_old center_pos_old=center_pos #距离中心点位置不能超过+-5cm #标记出来圆形,便于查看中心坐标,用于进行定点起飞和降落 #开始进行YAW纠正,三条线都在视野内开始进行偏航纠正 if(center_flag1==1 and center_flag2==1 and center_flag3==1): yaw_angle =math.atan((center_pos-32)/32) yaw_angle =math.degrees(yaw_angle) center_flag1=0;#标志清零 center_flag2=0;#标志清零 center_flag3=0; center_flag4=0; center_flag5=0; i=0; #50ms发送一次数据到飞控 if(yaw_angle<0): out_str1='-' out_str1+= '%.2d'% int(-yaw_angle) #寻找黑线中心位置计算出偏转角度 else: out_str1='+' out_str1+= '%.2d'% int(yaw_angle) #寻找黑线中心位置计算出偏转角度 if(delta_x<0): out_str1+='-' out_str1+='%.2d'% int(-delta_x); #光流数据 else: out_str1+='+' out_str1+='%.2d'% int(delta_x) #寻找黑线中心位置计算出偏转角度 if(delta_y<0): out_str1+='-' out_str1+= '%.2d'% int(-delta_y); #光流数据 else: out_str1+='+' out_str1+= '%.2d'% int(delta_y); #光流数据 out_str1+='%.2d'% int(center_pos); out_str1+='%.2d'% int(center_x); #圆心的位置 out_str1+='%.2d'% int(center_y); out_str1+='%.2d'% int(turn_flag); #直角标志位 out_str1+='%.2d'% int(last_x); #直角交点位置 out_str1+='%.2d'% int(last_y); uart.write('s'+out_str1+'#') print(out_str1) #像素位移之和清零 turn_flag=0; yaw_angle=0; delta_x=0 delta_y=0 #print("%0.1f Xcm %0.1f Ycm %0.2fQ\t" %(delta_x,delta_y,response)) #数组清零 out_str1=''#清除之前的数据 flag=0; #-----------------------------------串口打印数据-----------------------------------------#