星瞳实验室APP,快速收到回复
  • 我们只解决官方正版的OpenMV的问题(STM32),其他的分支有很多兼容问题,我们无法解决。
  • 如果有产品硬件故障问题,比如无法开机,论坛很难解决。可以直接找售后维修
  • 发帖子之前,请确认看过所有的视频教程,https://singtown.com/learn/ 和所有的上手教程http://book.openmv.cc/
  • 每一个新的提问,单独发一个新帖子
  • 帖子需要目的,你要做什么?
  • 如果涉及代码,需要报错提示全部代码文本,请注意不要贴代码图片
  • 必看:玩转星瞳论坛了解一下图片上传,代码格式等问题。
  • 代码整合问题,如何将人脸识别和人脸追踪的代码整合到一起?人脸的代码也不知道对不对?大佬求助



    • 这个是人脸追踪代码

      import sensor, image, time

      from pid import PID
      from pyb import Servo

      pan_servo=Servo(1)
      tilt_servo=Servo(2)
      red_threshold = (13, 49, 18, 61, 6, 47)
      pan_pid = PID(p=0.07, i=0, imax=90) #脱机运行或者禁用图像传输,使用这个PID
      tilt_pid = PID(p=0.05, i=0, imax=90) #脱机运行或者禁用图像传输,使用这个PID

      #pan_pid = PID(p=0.1, i=0, imax=90)#在线调试使用这个PID

      #tilt_pid = PID(p=0.1, i=0, imax=90)#在线调试使用这个PID
      sensor.reset() # Initialize the camera sensor.
      sensor.set_contrast(1)
      sensor.set_gainceiling(16)
      sensor.set_pixformat(sensor.GRAYSCALE) # use RGB565.
      sensor.set_framesize(sensor.QQVGA) # use QQVGA for speed.

      sensor.skip_frames(10) # Let new settings take affect.

      sensor.set_auto_whitebal(False) # turn this off.

      clock = time.clock() # Tracks FPS.
      face_cascade = image.HaarCascade("frontalface", stages=25)

      def find_max(blobs):

      max_size=0
      
      for blob in blobs:
      
          if blob[2]*blob[3] > max_size:
      
              max_blob=blob
      
              max_size = blob[2]*blob[3]
      
      return max_blob
      

      while(True):

      clock.tick() # Track elapsed milliseconds between snapshots().
      
      img = sensor.snapshot() # Take a picture and return the image.
      
      
      
      blobs = img.find_features(face_cascade, threshold=0.75, scale=1.35)
      
      if blobs:
      
          max_blob = find_max(blobs)
      
          pan_error = max_blob[0]+max_blob[2]/2-img.width()/2
      
          tilt_error = max_blob[1]+max_blob[3]/2-img.height()/2
      
      
      
          print("pan_error: ", pan_error)
      
      
      
          img.draw_rectangle(max_blob) # rect
      
          img.draw_cross (int(max_blob[0]+max_blob[2]/2), int(max_blob[1]+max_blob[3]/2)) # cx, cy
      
      
      
          pan_output=pan_pid.get_pid(pan_error,1)/2
      
          tilt_output=tilt_pid.get_pid(tilt_error,1)
      
          print("pan_output",pan_output)
      
          pan_servo.angle(pan_servo.angle()+pan_output)
      
          tilt_servo.angle(tilt_servo.angle()-tilt_output)
      

      这个是人脸识别代码

      import sensor, image, time

      from pid import PID
      from pyb import Servo

      pan_servo=Servo(1)
      tilt_servo=Servo(2)
      red_threshold = (13, 49, 18, 61, 6, 47)
      pan_pid = PID(p=0.07, i=0, imax=90) #脱机运行或者禁用图像传输,使用这个PID
      tilt_pid = PID(p=0.05, i=0, imax=90) #脱机运行或者禁用图像传输,使用这个PID

      #pan_pid = PID(p=0.1, i=0, imax=90)#在线调试使用这个PID

      #tilt_pid = PID(p=0.1, i=0, imax=90)#在线调试使用这个PID
      sensor.reset() # Initialize the camera sensor.
      sensor.set_contrast(1)
      sensor.set_gainceiling(16)
      sensor.set_pixformat(sensor.GRAYSCALE) # use RGB565.
      sensor.set_framesize(sensor.QQVGA) # use QQVGA for speed.

      sensor.skip_frames(10) # Let new settings take affect.
      sensor.skip_frames(time = 500)

      sensor.set_auto_whitebal(False) # turn this off.

      clock = time.clock() # Tracks FPS.
      face_cascade = image.HaarCascade("frontalface", stages=25)

      NUM_SUBJECT = 6
      NUM_SUBJECT_IMGS = 10

      imgs = sensor.snapshot()
      d0 = imgs.find_lbp((0,0,imgs.width(),imgs.height()))

      def min(pmin,a,s):
      global num
      if a<pmin:
      pmin=a
      num=s
      return pmin

      imgs = None
      pmin = 999999
      num=0

      def find_max(blobs):

      max_size=0
      
      for blob in blobs:
      
          if blob[2]*blob[3] > max_size:
      
              max_blob=blob
      
              max_size = blob[2]*blob[3]
      
      return max_blob
      

      while():

      clock.tick() # Track elapsed milliseconds between snapshots().
      
      img = sensor.snapshot() # Take a picture and return the image.
      
      
      
      blobs = img.find_features(face_cascade, threshold=0.75, scale=1.35)
      
      if blobs:
      
          max_blob = find_max(blobs)
      
          pan_error = max_blob[0]+max_blob[2]/2-img.width()/2
      
          tilt_error = max_blob[1]+max_blob[3]/2-img.height()/2
      
      
      
          print("pan_error: ", pan_error)
      
      
      
          img.draw_rectangle(max_blob) # rect
      
          img.draw_cross (int(max_blob[0]+max_blob[2]/2), int(max_blob[1]+max_blob[3]/2)) # cx, cy
      
      
      
          pan_output=pan_pid.get_pid(pan_error,1)/2
      
          tilt_output=tilt_pid.get_pid(tilt_error,1)
      
          print("pan_output",pan_output)
      
          pan_servo.angle(pan_servo.angle()+pan_output)
      
          tilt_servo.angle(tilt_servo.angle()-tilt_output)
      
      
      
      
          for s in range(2,NUM_SUBJECT+1):
                  dist = 0
                  for i in range(2,NUM_SUBJECT+1):
                      imgs = image.Image("singtown/s%d/%d.pmg"%(s,i))
                      d1 = imgs.find_lbp((0,0,imgs.width(),imgs.height()))
                      dist +=image.match_descriptor(d0,d1)
                  pmin = min(pmin.dist/NUM_SUBJECTS_IMGS,s)
          if pmin<7000:
              print("wellcome!")
          else:
          print("检测到陌生人")
      else:
          print("未检测到人脸")