• OpenMV VSCode 扩展发布了,在插件市场直接搜索OpenMV就可以安装
  • 如果有产品硬件故障问题,比如无法开机,论坛很难解决。可以直接找售后维修
  • 发帖子之前,请确认看过所有的视频教程,https://singtown.com/learn/ 和所有的上手教程http://book.openmv.cc/
  • 每一个新的提问,单独发一个新帖子
  • 帖子需要目的,你要做什么?
  • 如果涉及代码,需要报错提示全部代码文本,请注意不要贴代码图片
  • 必看:玩转星瞳论坛了解一下图片上传,代码格式等问题。
  • 示例文档中人眼检测第二十三行报错OSError: Could not find the file



    • # Face Eye Detection Example
      #
      # This script uses the built-in frontalface detector to find a face and then
      # the eyes within the face. If you want to determine the eye gaze please see the
      # iris_detection script for an example on how to do that.
      
      import sensor
      import time
      import image
      
      # Reset sensor
      sensor.reset()
      
      # Sensor settings
      sensor.set_contrast(1)
      sensor.set_gainceiling(16)
      sensor.set_framesize(sensor.HQVGA)
      sensor.set_pixformat(sensor.GRAYSCALE)
      
      # Load Haar Cascade
      # By default this will use all stages, lower satges is faster but less accurate.
      face_cascade = image.HaarCascade("frontalface", stages=25)
      ![0_1731476768292_屏幕截图 2024-11-13 133801.png](https://fcdn.singtown.com/a36daea0-0353-4d05-823d-af3bf422c750.png) eyes_cascade = image.HaarCascade("eye", stages=24)
      print(face_cascade, eyes_cascade)
      
      # FPS clock
      clock = time.clock()
      
      while True:
          clock.tick()
      
          # Capture snapshot
          img = sensor.snapshot()
      
          # Find a face !
          # Note: Lower scale factor scales-down the image more and detects smaller objects.
          # Higher threshold results in a higher detection rate, with more false positives.
          objects = img.find_features(face_cascade, threshold=0.5, scale_factor=1.5)
      
          # Draw faces
          for face in objects:
              img.draw_rectangle(face)
              # Now find eyes within each face.
              # Note: Use a higher threshold here (more detections) and lower scale (to find small objects)
              eyes = img.find_features(
                  eyes_cascade, threshold=0.5, scale_factor=1.2, roi=face
              )
              for e in eyes:
                  img.draw_rectangle(e)
      
          # Print FPS.
          # Note: Actual FPS is higher, streaming the FB makes it slower.
          print(clock.fps())