• OpenMV VSCode 扩展发布了,在插件市场直接搜索OpenMV就可以安装
  • 如果有产品硬件故障问题,比如无法开机,论坛很难解决。可以直接找售后维修
  • 发帖子之前,请确认看过所有的视频教程,https://singtown.com/learn/ 和所有的上手教程http://book.openmv.cc/
  • 每一个新的提问,单独发一个新帖子
  • 帖子需要目的,你要做什么?
  • 如果涉及代码,需要报错提示全部代码文本,请注意不要贴代码图片
  • 必看:玩转星瞳论坛了解一下图片上传,代码格式等问题。
  • openmv与电脑连接下代码正常运行,但只要将代码放到SD卡让他脱机上电运行就会报错并且SD被损坏代码乱码?



    • 0_1679111116632_1.jpg

      # Face recognition with LBP descriptors.
      # See Timo Ahonen's "Face Recognition with Local Binary Patterns".
      #
      # Before running the example:
      # 1) Download the AT&T faces database http://www.cl.cam.ac.uk/Research/DTG/attarchive/pub/data/att_faces.zip
      # 2) Exract and copy the orl_faces directory to the SD card root.
      
      
      import sensor, time, image, pyb, lcd
      from pyb import UART
      
      uart = UART(3, 115200)
      sensor.reset() # Initialize the camera sensor.
      sensor.set_pixformat(sensor.GRAYSCALE) # or sensor.GRAYSCALE
      sensor.set_framesize(sensor.QQVGA2) # or sensor.QQVGA (or others)
      
      sensor.skip_frames(10) # Let new settings take affect.
      lcd.init()
      sensor.skip_frames(time = 3000) #等待5s
      
      
      
      #SUB = "s1"
      NUM_SUBJECTS = 2 #图像库中不同人数,一共6人
      NUM_SUBJECTS_IMGS = 20 #每人有20张样本图片
      
      while True:
      # 拍摄当前人脸。
          img = sensor.snapshot()
          #img.draw_string(0,0,"hjhjk")
          pyb.LED(2).off()
          lcd.display(img) # 拍照并显示图像。
          #img = sensor.snapshot()
          #img = image.Image("singtown/%s/1.pgm"%(SUB))
          d0 = img.find_lbp((0, 0, img.width(), img.height()))
          #d0为当前人脸的lbp特征
          img = None
          pmin = 999999
          num=0
      
          def min(pmin, a, s):
              global num
              if a<pmin:
                  pmin=a
                  num=s
              return pmin
      
          for s in range(1, NUM_SUBJECTS+1):
              dist = 0
              for i in range(2, NUM_SUBJECTS_IMGS+1):
                  img = image.Image("facedb/face%d/%d.pgm"%(s, i))
                  d1 = img.find_lbp((0, 0, img.width(), img.height()))
                  #d1为第s文件夹中的第i张图片的lbp特征
                  dist += image.match_descriptor(d0, d1)#计算d0 d1即样本图像与被检测人脸的特征差异度。
      
              print("Average dist for subject %d: %d"%(s, dist/NUM_SUBJECTS_IMGS))
              pmin = min(pmin, dist/NUM_SUBJECTS_IMGS, s)#特征差异度越小,被检测人脸与此样本更相似更匹配。
              print(pmin)
      
          print(num) # num为当前最匹配的人的编号。
      
          if(dist/NUM_SUBJECTS_IMGS < 10000) :
              pyb.LED(2).on()
              if num == 1:
                  imgstr = sensor.snapshot()
                  imgstr.draw_string(0,0,"Ms.Pu",0)
                  lcd.display(imgstr) # 拍照并显示图像。
                  uart.write("1\r\n")
              elif num ==2:
                  imgstr = sensor.snapshot()
                  imgstr.draw_string(0,0,"Ms.Yuan",0)
                  lcd.display(imgstr) # 拍照并显示图像。
                  uart.write("2\r\n")
              time.sleep(5)