请问你解决这个问题了吗
twy4
@twy4
0
声望
6
楼层
403
资料浏览
0
粉丝
1
关注
twy4 发布的帖子
-
请问如何提取赛道中心线?
回复: 请问如何绘制赛道中心线
纯白色的赛道,两边有黑色边缘,无其它颜色的干扰,赛道只包含一个弯道。请问如何绘制赛道的中心线,然后再获取到摄像头最下方中心线点的坐标 -
提取双线计算中间赛道的程序,报错了,请问是怎么回事?
ROIS = [ # [ROI, weight] (0, 0, 80, 120, 0.5), # You'll need to tweak the weights for you app (80, 0, 80, 120, 0.5) # depending on how your robot is setup. ] weight_sum = 0 #权值和初始化 #for r in ROIS: weight_sum += r[2] # r[4] is the roi weight.A #计算权值和。遍历上面的三个矩形,r[4]即每个矩形的权值。 # This is called the fast linear regression because we use the least-squares # method to fit the line. However, this method is NOT GOOD FOR ANY images that # have a lot (or really any) outlier points which corrupt the line fit... #设置阈值,(0,100)检测黑色线 THRESHOLD = (0, 100) # Grayscale threshold for dark things... #设置是否使用img.binary()函数进行图像分割 BINARY_VISIBLE = True # Does binary first so you can see what the linear regression # is being run on... might lower FPS though. import sensor, image, time import json from pyb import UART uart = UART(3, 9600) sensor.reset() sensor.set_pixformat(sensor.GRAYSCALE) sensor.set_framesize(sensor.QQVGA) sensor.skip_frames(time = 2000) clock = time.clock() while(True): clock.tick() img = sensor.snapshot().binary([THRESHOLD]) if BINARY_VISIBLE else sensor.snapshot() centroid_sum = 0 for r in ROIS: blobs = img.find_blobs(THRESHOLD , roi=r[0:2], merge=True) # Returns a line object similar to line objects returned by find_lines() and # find_line_segments(). You have x1(), y1(), x2(), y2(), length(), # theta() (rotation in degrees), rho(), and magnitude(). # # magnitude() represents how well the linear regression worked. It goes from # (0, INF] where 0 is returned for a circle. The more linear the # scene is the higher the magnitude. #函数返回回归后的线段对象line,有x1(), y1(), x2(), y2(), length(), theta(), rho(), magnitude()参数。 #x1 y1 x2 y2分别代表线段的两个顶点坐标,length是线段长度,theta是线段的角度。 #magnitude表示线性回归的效果,它是(0,+∞)范围内的一个数字,其中0代表一个圆。如果场景线性回归的越好,这个值越大。 line = img.get_regression([(255,255) if BINARY_VISIBLE else THRESHOLD]) if (line): img.draw_line(line.line(), color = 127) arveage_x1 += line.x1 ()*r[4] arveage_x2 += line.x2 ()*r[4] arveage_y1 += line.y1 ()*r[4] arveage_y2 += line.y2 ()*r[4] arveage_theta += line.theta()*r[4] img.draw_line(arveage_x1,arveage_y1,arveage_x2,arveage_y2, color = 80) print("FPS %f, mag = %s" % (clock.fps(), str(line.magnitude()) if (line) else "N/A")) # About negative rho values: # # A [theta+0:-rho] tuple is the same as [theta+180:+rho]. data_out = str(line.theta()) uart.write(data_out ) time.sleep(100) print("OUT",data_out)
-
RE: 请问这段代码中line.x1 ()*r[4] 这里的*r[4]后得到的结果有什么具体含义吗?
注释r中说r[4]为每个矩形的权值,但我仍然不理解坐标乘以权值能得到什么,或者说有什么含义?
-
请问这段代码中line.x1 ()*r[4] 这里的*r[4]后得到的结果有什么具体含义吗?
ROIS = [ # [ROI, weight] (0, 0, 80, 120, 0.5), # You'll need to tweak the weights for you app (80, 0, 80, 120, 0.5) # depending on how your robot is setup. ] weight_sum = 0 #权值和初始化 #for r in ROIS: weight_sum += r[2] # r[4] is the roi weight.A #计算权值和。遍历上面的三个矩形,r[4]即每个矩形的权值。 # This is called the fast linear regression because we use the least-squares # method to fit the line. However, this method is NOT GOOD FOR ANY images that # have a lot (or really any) outlier points which corrupt the line fit... #设置阈值,(0,100)检测黑色线 THRESHOLD = (0, 100) # Grayscale threshold for dark things... #设置是否使用img.binary()函数进行图像分割 BINARY_VISIBLE = True # Does binary first so you can see what the linear regression # is being run on... might lower FPS though. import sensor, image, time import json from pyb import UART uart = UART(3, 9600) sensor.reset() sensor.set_pixformat(sensor.GRAYSCALE) sensor.set_framesize(sensor.QQVGA) sensor.skip_frames(time = 2000) clock = time.clock() while(True): clock.tick() img = sensor.snapshot().binary([THRESHOLD]) if BINARY_VISIBLE else sensor.snapshot() centroid_sum = 0 for r in ROIS: blobs = img.find_blobs(THRESHOLD , roi=r[0:2], merge=True) # Returns a line object similar to line objects returned by find_lines() and # find_line_segments(). You have x1(), y1(), x2(), y2(), length(), # theta() (rotation in degrees), rho(), and magnitude(). # # magnitude() represents how well the linear regression worked. It goes from # (0, INF] where 0 is returned for a circle. The more linear the # scene is the higher the magnitude. #函数返回回归后的线段对象line,有x1(), y1(), x2(), y2(), length(), theta(), rho(), magnitude()参数。 #x1 y1 x2 y2分别代表线段的两个顶点坐标,length是线段长度,theta是线段的角度。 #magnitude表示线性回归的效果,它是(0,+∞)范围内的一个数字,其中0代表一个圆。如果场景线性回归的越好,这个值越大。 line = img.get_regression([(255,255) if BINARY_VISIBLE else THRESHOLD]) if (line): img.draw_line(line.line(), color = 127) arveage_x1 += line.x1 ()*r[4] arveage_x2 += line.x2 ()*r[4] arveage_y1 += line.y1 ()*r[4] arveage_y2 += line.y2 ()*r[4] arveage_theta += line.theta()*r[4] img.draw_line(arveage_x1,arveage_y1,arveage_x2,arveage_y2, color = 80) print("FPS %f, mag = %s" % (clock.fps(), str(line.magnitude()) if (line) else "N/A")) # About negative rho values: # # A [theta+0:-rho] tuple is the same as [theta+180:+rho]. data_out = str(line.theta()) uart.write(data_out ) time.sleep(100) print("OUT",data_out)